
Cybersquare

A Plea for Lean
Software

Niklaus Wirth
ETHZurich

Software's girth has surpassed

its functionality, largely

because hardware

advances make this possible.

The way to streamline

software lies in disciplined

methodologies and

a return to the essentials.

Iemory requirements of today's workstations typicallyjump
substantially—from several to many megabytes—whenever
there's a new software release. When demand surpasses

capacity, it's time to buy add-on memory. When the system has no more
extensibility, it's time to buy a new, more powerful workstation. Do
increased performance and functionality keep pace with the increased
demand for resources? Mostly the answer is no.

About 25 years ago, an interactive text editor could be designed with as
little as 8,000 bytes ofstorage. (Modern program editors request 100 times
that much!) An operating system had to manage with 8,000 bytes, and a
compiler had to fit into 32 Kbytes, whereas their modern descendants
require megabytes. Has all this inflated software become any faster? On
the contrary. Were it not for a thousand times faster hardware, modern
software would be utterly unusable.

Enhanced user convenience and functionality supposedly justify the
increased size of software, but a closer look reveals these justifications to
be shaky. A text editorstill performs the reasonably simple task of insert-
ing, deleting, and moving parts of text; a compiler still translates text into
executable code; and an operating system still manages memory, disk
space, and processor cycles. These basic obligations have not changed
with the advent ofwindows, cut-and-paste strategies, and pop-up menus,
nor with the replacement ofmeaningful command words by pretty icons!
The apparent software explosion is accepted largelybecause of the stag-

gering progress made by semiconductor technology, which has improved
the price/performance ratio to a degree unparalleled by any other branches
of technology. For example, from 1978 to 1993 Intel's 80x86 family of
processors increased power by a factor of 335, transistor density by a fac-
tor of 107, and price by a factor of about 3. The prospects for continuous
performance increase are still solid, and there is no sign that software's
ravenous appetite will be appeased anytime soon. 1 This development has
spawned numerous rules, laws, and corollaries, which are—as is cus-
tomary in such cases—expressed in general terms; thus they are neither
provable nor refutable. With a touch of humor, the following two laws
reflect the state of the art admirably well

:

• Software expands to fill the available memory. (Parkinson)
• Software is getting slower more rapidly than hardware becomes faster.

(Reiser)

Uncontrolled software growth has also been accepted because cus-
tomers have trouble distinguishing between essential features and those
that are just "nice to have." Examples of the latter class: those arbitrarily
overlapping windows suggested by the uncritically but widely adopted

Computer
0018-9162/95/$4.00© 1995 IEEE

desktop metaphor; and fancy icons decorating the screen

display, such as antique mailboxes and garbage cans that

are further enhanced by the visible movement of selected

items toward their ultimate destination. These details are

cute but not essential, and they have a hidden cost.

CAUSES FOR "FAT SOFTWARE"
Clearly, two contributing factors to the acceptance of

ever-growing software are (1) rapidly growing hardware

performance and (2) customers' ignorance offeatures that

are essential-versus-nice to have. But perhaps more impor-

tant than finding reasons for tolerance is questioning the

causes: What drives software toward complexity?

A primary cause of complexity is that software vendors

uncritically adopt almost any feature that users want. Any
incompatibility with the original system concept is either

ignored or passes unrecognized, which renders the design

more complicated and its use more cumbersome. When a

system's power is measured by the number of its features,

quantity becomes more important than quality. Everynew
release must offer additional features, even if some don't

add functionality.

All features, all the time
Another important reason for software complexity lies

in monolithic design, wherein all conceivable features are

part of the system's design. Each customer pays for all fea-

tures but actually uses very few. Ideally, only a basic sys-

tem with essential facilities would be offered, a system

that would lend itself to various extensions. Every cus-

tomer could then select the extensions genuinely required

for a given task.

Increased hardware power has undoubtedly been the

primary incentive for vendors to tackle more complex

problems, and more complex problems inevitably require

more complex solutions. But it is not the inherent com-

plexity that should concern us; it is the self-inflicted com-

plexity. There are many problems that were solved long

ago, but for the same problems we are now offered solu-

tions wrapped in much bulkier software.

Increased complexity results in large part from our

recent penchant for friendly user interaction. I've already

mentioned windows and icons; color, gray-scales, shad-

ows, pop-ups, pictures, and all kinds of gadgets can easily

be added.

To some, complexity equals power
A system's ease of use always should be a primary goal,

but that ease should be based on an underlying concept

that makes the use almost intuitive. Increasingly, people

seem to misinterpret complexity as sophistication, which

is baffling—the incomprehensible should cause suspicion

rather than admiration.

Possibly this trend results from a mistaken belief that

using a somewhat mysterious device confers an aura of

power on the user. (What it does confer is a feeling of help-

lessness, if not impotence.) Therefore, the lure of com-

plexity as a sales incentive is easily understood; complexity

promotes customer dependence on the vendor.

It's well known, for example, that major software houses

have heavily invested—with success—in customer service,

employing hundreds of consultants to answer customer

calls around the clock. Much more economical for both pro-

ducer and consumer, however, would be a product based

on a systematic concept—that is, on generally valid rules

of inference rather than on tables of rules that are applica-

ble to specific situations only—coupled with systematic doc-

umentation and a tutorial. Of course, a customer who
pays—in advance—for service contracts is a more stable

income source than a customer who has fully mastered a

product's use. Industry and academia are probably pursu-

ing very different goals; hence, the emergence of another

"law:"

• Customer dependence is more profitable than customer

education.

What I find truly baffling are manuals—hundreds ofpages

long—that accompany software applications, programming

languages, and operating systems. Unmistakably, they sig-

nal both a contorted design that lacks clear concepts and an

intent to hook customers.

This lack of lucid concepts can't alone account for the

software explosion. Designing solutions for complicated

problems, whether in software or hardware, is a difficult,

expensive, and time-consuming process. Hardware's

improved price/performance ratio has been achieved

more from better technology to duplicate (fabricate)

designs than from better design technique mastery.

Software, however, is all design, and its duplication costs

the vendor mere pennies.

Initial designs for sophis-

ticated software applications

are invariably complicated,

even when developed by

competent engineers. Truly

good solutions emerge after

iterative improvements or

after redesigns that exploit

new insights, and the most rewarding iterations are those

that result in program simplifications. Evolutions ofthis kind,

however, are extremely rare in current software practice

—

they require time-consuming thought processes that are

rarelyrewarded. Instead, software inadequacies are typically

corrected by quickly conceived additions that invariably result

in the well-known bulk.

Never enough time
Time pressure is probably the foremost reason behind

the emergence of bulky software. The time pressure that

designers endure discourages careful planning. It also dis-

courages improving acceptable solutions; instead, it

encourages quickly conceived software additions and cor-

rections. Time pressure gradually corrupts an engineer's

standard of quality and perfection. It has a detrimental

effect on people as well as products.

The fact that the vendor whose product is first on the

market is generally more successful than the competitor

who arrives second, although with a better design, is

another detrimental contribution to the computer indus-

try. The tendency to adopt the "first" as the de facto stan-

dard is a deplorable phenomenon, based on the same time

pressure.

Good engineering is characterized by a gradual, step-

GOOD ENGINEERING IS

CHARACTERIZED BY A
GRADUAL, STEPWISE
REFINEMENT OF PRODUCTS.

February 1995

ABSTRACTION
WORKS ONLY

WITH LANGUAGES
THAT POSTULATE
STRICT TYPING OF
VARIABLES AND
FUNCTIONS. IN

THIS RESPECT, C
FAILS.

wise refinement of products that yields increased perfor-

mance under given constraints and with given resources.

Software's resource limitations are blithely ignored, how-
ever: Rapid increases in processor speed and memory size

are commonly believed to compensate for sloppysoftware

design. Meticulous engineering habits do not pay off in

the short run, which is one reason why software plays a

dubious role among established engineering disciplines.

LANGUAGES AND DESIGN
METHODOLOGY
Although software research, which theoretically holds

the key to many future technologies, has been heavily sup-

ported, its results are seemingly irrelevant to industry.

Methodical design, for example, is apparently undesirable

because products so developed take too much "time to

market." Analytical verification and correctness-proof

techniques fare even worse; in addition, these methods

require a higher intellectual caliber than that required by

the customary "try and fix it" approach. To reduce soft-

ware complexity by concentrating only on the essentials is

a proposal swiftly dismissed as ridiculous in view of cus-

tomers' love for bells and whistles. When "everything

goes" is the modus operandi, methodolo-

gies and disciplines are the first casualties.

Programming language methodologies

are particularly controversial. In the 1970s,

it was widely believed that program design

must be based on well-structured methods

and layers of abstraction with clearly

defined specifications. The abstract data

type best exemplified this idea and found

expression in then-new languages such as

Modula-2 and Ada. Today, programmers
arc abandoning well-structured languages

and migrating mostly to C. The C language

doesn't even let compilers perform secure

type checking, yet this compiler task is by far most help-

ful to program development in locating early conceptual

mistakes. Without type checking, the notion of abstrac-

tion in programming languages remains hollow and aca-

demic. Abstraction can work only with languages that

postulate strict, static typing of every variable and func-

tion. In this respect, C fails—it resembles assembler code,

where "everything goes."

Reinventing the wheel?
Remarkably enough, the abstract data type has reap-

peared 25 years after its invention under the heading

object oriented. This modern term's essence, regarded by

many as a panacea, concerns the construction of class

(type) hierarchies. Although the older concept hasn't

caught on without the newer description "object oriented,"

programmers recognize the intrinsic strength of the

abstract data type and convert to it. To be worthy of the

description, an object-oriented language must embody
strict, static typing that cannot be breached, whereby pro-

grammers can rely on the compiler to identify inconsis-

tencies. Unfortunately, the most popular object-oriented

language, C++, is no help here because it has been
declared to be upwardly compatible with its ancestor C.

Its wide acceptance confirms the following "laws":

• Progress is acceptable only if it's compatible with the

current state.

• Adhering to a standard is always safer.

Given this situation, programmers struggle with a lan-

guage that discourages structured thinking and disci-

plined program construction (and denies basic compiler

support). They also resort to makeshift tools that chiefly

add to software's bulk.

What a grim picture; what a pessimist! the reader must

be thinking. No hint of computing's bright future, hereto-

fore regarded as a given.

This admittedly somber view is realistic; nonetheless,

given the will, there is a way to improve the state of the art.

PROJECT OBERON
Between 1986 and 1989, Jurg Gutknecht and I designed

and implemented a new software system—called

Oberon—for modern workstations, based on nothing but

hardware. Our primary goal was lo show that software

can be developed with a fraction of [he memory capacity

and processor power usually required, without sacrificing

flexibility, functionality, or user convenience.

The Oberon system has been in use since 1989, serving

purposes that include document preparation, software

development, and computer-aided design of electronic cir-

cuits, among many others. The system includes

• storage management,
• a file system,

• a window display manager,

• a network with servers,

• a compiler, and
• text, graphics, and document editors.

Designed and implemented—from scratch—by two

people within three years, Oberon has since been ported

to several commercially available workstations and has

found many enthusiastic users, particularly since it is freely

available. 2

Our secondary goal was to design a system that could be

studied and explained in detail, a system suitable as a soft-

ware-design case study that could be penetrated top-down

and whose design decisions could be stated explicitly.

(Indeed, there is a lack of published case studies in soft-

ware construction, which becomes all the more evident

when one is faced with the task of teaching courses.) The
result of our efforts is a single book that describes the

entire system and contains the source code of all modules.

How is it possible to build a software system with some
five man-years of effort and present it in a single book? 3

Three underlying tenets

First, we concentrated on the essentials. We omitted any-

thing that didn't fundamentally contribute to power and

flexibility. For example, user interaction in the basic system

is confined to textual information—no graphics, pictures,

or icons.

Secondly, we wanted to use a truly object-oriented pro-

gramming language, one that was type-safe. This, coupled

with our beliefthat the first tenet must apply even more strin-

gently to the tools than to the system being built, forced us

Computer

to design our own language and to construct its compiler as

well. It led to Oberon,4 a language derived from Modula-2 by

eliminating less essential features (like subrange and enu-

meration types) in addition to features known to be unsafe

(like type transfer functions and variant records)

.

Lastly, to be simple, efficient, and useful, we wanted a

system to beflexibly extensible. This meant that new mod-
ules could be added that incorporate new procedures

based on calling existing ones. It also meant that new data

types could be defined (in new modules), compatible with

existing types. We call these extended types, and they con-

stitute the only fundamental concept that was added to

Modula-2.

Type extension

If, for example, a type Viewer is defined in a module

called Viewers, then a type TextViewer can be defined as

an extension ofViewer (typically, in another module that

is added to the system). Whatever operations apply to

Viewers apply equally to TextViewers, and whatever prop-

erties Viewers have, TextViewers have as well.

Extensibility guarantees that modules may later be

added to the system without requiring either changes or

recompilation. Obviously, type safety is crucial and must

cross module boundaries.

Type extension is a typical object-oriented feature. To

avoid misleading anthropomorphisms, we prefer to say

"TextViewers are compatible with Viewers," rather than

"TextViewers inherit from Viewers." We also avoid intro-

ducing an entirelynew nomenclature for well-known con-

cepts; for example, we stick to the term type, avoiding the

word class; we retain the terms variable and procedure,

avoiding the new terms instance and method. Clearly, our

first tenet—concentrating on essentials—also applies to

terminology.

Tale of a data type
An example of a data type will illustrate our strategy of

building basic functionality in a core system, with features

added according to the system's extensibility.

In the system's core, the data type Text is defined as char-

acter sequences with the attributes of font, offset, and

color. Basic editing operations are provided in a module

called TextFrames.

An electronic mail module is not included in the core,

but can be added when there is a demand. When it is

added, the electronic mail module relies on the core sys-

tem and imports the types Text and TextFrame displaying

texts. This means that normal editing operations can be

applied to received e-mail messages. The messages can be

modified, copied, and inserted into other texts visible on

the screen display by using core operations . The only oper-

ations that the e-mail module uniquely provides are receiv-

ing, sending, and deleting a message, plus a command to

list the mailbox directory.

Operation activation

Another example that illustrates our strategy is the acti-

vation of operations. Programs are not executed in

Oberon; instead, individual procedures are exported from

modules. If a certain module M exports a procedure P,

then P can be called (activated) by merely pointing at the

stringM.P appearing in any text visible on the display, that

is, by moving the cursor to M.P and clicking a mouse but-

ton. Such straightforward command activation opens the

following possibilities:

1. Frequently used commands are listed in short pieces

of text. These are called tool-texts and resemble cus-

tomized menus, although no special menu software is

required. They are typically displayed in small viewers

(windows).

2. By extending the system with a simple graphics edi-

tor that provides captions based on Oberon texts, com-

mands can be highlighted and otherwise decorated

with boxes and shadings. This results in pop-up and/or

pull-down menus, buttons, and icons that are "free"

because the basic command activation mechanism is

reused.

3. A message received by e-mail can contain commands
as well as text. Commands are executed by the recip-

ient's clicking into the message (without copying into

a special command window). We use this feature, for

example, when announcing new or updated module

releases. The message typically contains receive com-

mands followed by lists of module names to be down-

loaded from the network. The entire process requires

only a few mouse clicks.

Keeping it simple

The strategy of keeping the core system simple but

extensible rewards the modest user. The Oberon core

occupies fewer than 200 Kbytes, including editor and com-

piler. A computer system based on Oberon needs to be

expanded only if large, demanding applications are

requested, such as CAD with large memory requirements.

If several such applications are used, the system does not

require them to be simultaneously loaded. This economy

is achieved by the following system properties:

1. Modules can be loaded on demand. Demand is signaled

either when a command is activated—which is

defined in a module not already loaded—or when a

module being loaded imports another module not

already present. Module loading can also result from

data access. For example, when a document that con-

tains graphical elements is accessed by an editor

whose graphic package is not open, then this access

inherently triggers its loading.

2. Every module is in memory at most once. This rule pro-

hibits the creation of linked load files (core images).

Typically, linked load files are introduced in operating

systems because the process of linking is complicated

and time-consuming (sometimes more so than com-

pilation). With Oberon, linking cannot be separated

from loading. This is entirely acceptable because the

intertwined activities are very fast; they happen auto-

matically the first time a module is referenced.

The price of simplicity

The experienced engineer, realizing that free lunches

never are, will now ask, Where is the pricefor this economy

hidden?A simplified answer is : in a clear conceptual basis

and a well-conceived, appropriate system structure.

February 1995

If the core—or any other module—is to be successfully

extensible, its designer must understand how it will be

used. Indeed, the most demanding aspect ofsystem design

is its decomposition into modules. Each module is a part

with a precisely defined interface that specifies imports

and exports.

Each module also encapsulates implementation tech-

niques. All of its procedures must be consistent with

respect to handling its exported data types. Precisely defin-

ing the right decomposition is difficult and can rarely be

achieved without iterations. Iterative (tuning) improve-

ments are of course only possible up to the time ofsystem

release.

It is difficult to generalize design rules. If an abstract

data type is defined, carefully deliberated basic operations

must accompany it, but composite operations should be

avoided. It's also safe to say that the long-accepted rule of

specification before implementation must be relaxed.

Specifications can turn out to be as unsuitable as imple-

mentations can turn out to be wrong.

In concluding, here are nine lessons learned from the

Oberon project that might be worth considering by any-

one embarking on a new software design:

1. The exclusive use of a strongly typed language was the

most influential factor in designing this complex sys-

tem in such a short time. (The manpower was a small

fraction ofwhat would typicallybe expended for com-

parably sized projects based on other languages.)

Static typing (a) lets the compiler pinpoint inconsis-

tencies before program execution; (b) lets the design-

er change definitions and structures with less danger

of negative consequences; and (c) speeds up the

improvement process, which could include changes

that might not otherwise be considered feasible.

2. The most difficult design task is to find the most appro-

priate decomposition of the whole into a module hier-

archy, minimizing function and code duplications.

Oberon is highly supportive in this respect by carry-

ing type checks over module boundaries.

3. Oberon's type extension construct was essential for

designing an extensible system wherein new modules

added functionality and new object classes integrat-

ed compatibly with the existing classes or data types.

Extensibility is prerequisite to keeping a system

streamlined from the outset. It also permits the sys-

tem to be customized to accommodate specific appli-

cations at any time, notably without access to the

source code.

4. In an extensible system, the key issue is to identify

those primitives that offer the most flexibility for

extensions, while avoiding a proliferation of primi-

tives.

5. The belief that complex systems require armies of

designers and programmers is wrong. A system that

is not understood in its entirety, or at least to a signif-

icant degree of detail by a single individual, should

probably not be built.

6. Communication problems grow as the size of the

design team grows. Whether they are obvious or not,

when communication problems predominate, the

team and the project are both in deep trouble.

7. Reducing complexity and size must be the goal in

every step—in system specification, design, and in

detailed programming. A programmer's competence

should bejudged by the ability to find simple solutions,

certainly not by productivity measured in "number of

lines ejected per day." Prolific programmers contribute

to certain disaster.

8. To gain experience, there is no substitute for one's own
programming effort. Organizing a team into man-

agers, designers, programmers, analysts, and users is

detrimental. All should participate (with differing

degrees ofemphasis) in all aspects ofdevelopment. In

particular, everyone—including managers—should

also be product users for a time. This last measure is

the best guarantee to correct mistakes and perhaps

also to eliminate redundancies.

9. Programs should be written and polished until they

acquire publication quality. It is infinitely more
demanding to design a publishable program than one

that "runs." Programs should be written for human
readers as well as for computers. If this notion con-

tradicts certain vested interests in the commercial

world, it should at least find no resistance in acade-

mia.

With Project Oberon we have demonstrated that flexi-

ble and powerful systems can be built with substantially

fewer resources in less time than usual. The plague of soft-

ware explosion is not a "law of nature." It is avoidable, and

it is the software engineer's task to curtail it. I

References

1. E. Perratore et al., "Fighting Fatware," Byte, Vol. 18, No. 4,

Apr. 1993, pp. 98-108.

2. M. Reiser, The Oberon System, Addison-Wesley, Reading,

Mass., 1991.

3. N. Wirth and J. Gutknecht, Project Oberon—The Design ofan

Operating System and Compiler, Addison-Wesley, Reading,

Mass., 1992.

4. M. Reiser and N. Wirth, Programming in Oberon—Steps

Beyond Pascal and Modula, Addison-Wesley, Reading, Mass.,

1992.

Niklaus Wirth is professor ofcomputer science at the Swiss

Federal Institute ofTechnology (ETH) in Zurich. He designed

theprogramming languages Pascal (1970), Modula (1980),

and Oberon (1988), and the workstations Lilith (1980) and

Ceres (1986), as well as their operating software.

Wirth received a PhDfrom the University of California at

Berkeley in 1963. He was awarded the IEEEEmmanuel Piore

Prize and theACM TuringAward (1984). He was named a

Computer Pioneer by the IEEE Computer Society and is a For-

eign Associate of the NationalAcademy ofEngineering.

Readers can contact the author at Institutfilr Computersys-

teme, ETH CH-8092 Zurich, Switzerland; e-mail wirth@

inf.ethz.ch.

Computer

