
Welcome

On faster application startup times: Cache stuffing, seek
profiling and adaptive preloading

bert hubert <bert.hubert@netherlabs.nl>
Netherlabs Computer Consulting BV

PowerDNS.COM BV
http://netherlabs.nl - http://ds9a.nl - http://wiki.powerdns.com

Thanks to: Seth Arnold, Zwane Mwaikambo, Con Kolivas,
Alexn, Relayfs people (IBM)

102:14:14 pm

Outline of presentation

● Some theory of how disks appear to work
● Problem statement: know what to solve
● Application startup pessimization: on-

demand loading
● Prior art (Andrew K̀P' Morton, Linus

Torvalds, Windows 95 (Intel))
● New measurements
● Solutions / Discussion

202:14:14 pm

50,000 foot view of disks

● Not as simple as they appear
● Sources of latency

– PCI/IDE

– Head positioning

– Rotational – waiting for data to pass under

the head

– Interrupt, copying data to userspace

● Manufacturers not being very open

302:14:14 pm

Typical disk performance claims

● High-end drive: full-stroke latency of 8ms,

track-to-track in 0.3ms
● Silent about rotational latency, we're ass-u-

med to know.
● Calculation: Average laptop disk,

5400RPM: 0.5*60/5400 = 5.6ms
● Real life is more like 20ms (!)
● Equivalent to reading 5 megabytes contig.

402:14:14 pm

Our challenge

● While ẁe' generally achieve month- or

year-long uptimes and have staggering

amounts of memory, others benefit less

from the page-cache.
● Starting an application should not wait on

i/o for much longer than the amount of

data it needs would've taken to read

linearly
502:14:14 pm

My limited goal in all this

● Provide patch to do instrumenting
● Provide tools to interpret results
● Make pretty graphs
● Allow other people to improve Linux based

on serious measurements
● Bonus: might also be useful to i/o

scheduler people

602:14:14 pm

Application startup

● `On-demand loading' – hip in the 80s.
● Means: mmap executable and its libraries

into memory, and execute away
● `Missing data' will cause page faults, which

will trigger actual disk reads – slick, but:
● Data access patterns determined by whims

of the linker and call-graph of process!

702:14:14 pm

Prior art

● Several distributions now preload binaries
● akpm has studied contents of the page cache, and

attempted to restore it – to no avail
● Arjen van de Ven: readahead doesn't help
● Linus has stated that the only `right' way of doing

this is to stuff the page cache from linearly read
data – dangerous

● It appears Windows speculatively loads data that
was touched on previous boot

802:14:14 pm

What we need is DATA

● Saying which rhymes in Dutch t̀o measure

is to know' – hence our strong scientific

achievements :-)
● Anything else is mental masturbation

(according to Linus)
● What you don't measure gets subverted

(after a while)

902:14:14 pm

Measurements

● Problem: the reads we care about are ùn-

straceable'
● So, we instrument the bio-layer
● Initially performed using block_dump of

laptop_mode, combined with audit

subsystem
● Problem: this gives blocks on devices, not

file names
1002:14:14 pm

Measurements II

● Solution: instrument sys_open as well
● Use FIBMAP on all opened files to make

reverse map of block->file
● To do all this in userspace, transfer data

using relayfs to C++ application
● Tiny remaining problem, 'ended' bios are

device-relative, they start partition-relative

1102:14:14 pm

Measurements III

● Validate traces (count that no bio-requests

are duplicates, or end twice), confidence in

data is high
● Some duplicate bios: fsck & kernel itself
● Timestamping done using jiffies + tsc,

measurements with equal jiffies are shifted

tsc for sub-HZ pretty graphs
● And without further ado: GNUPLOT!

1202:14:14 pm

HD cache for adjacent reads

X­axis: ms
Y­axis: sector

Note the cluster
of `fast bios'
around 19400ms
– the disk had
them

Above is typical

1302:14:15 pm

S̀torage is a lie' (Andre Hedrick)

X­axis: ms
Y­axis: sectors

This depicts writes
performed by the
kernel itself – most
likely ext3

Note how the
initial writes are
'instantaneous'!

(is this bad?)
1402:14:15 pm

Mozilla startup + simulation

x­axis: ms
y­axis: sectors

Mozilla startup on
slow laptop:
20 seconds

The blue line is an
artist's impression of
how things could be,
if requests were
sorted.
Note empty areas!

Quiet! Again! 1502:14:15 pm

More mozilla statistics

● Took 20 seconds, of which 5 were purely

CPU-bound
● 942 different bios
● 19 megabytes (effective rate: 1MB/s)
● In 84 extents (defined as within 5

megabytes)
● 6 larger than 1MB, comprising 12MB
● Massive chances!

1602:14:15 pm

Openoffice: counter-example

x­axis: ms
y­axis: sectors

Note high locality­
of­reference

Second startup of
OO is still slow.

IO is only partly
to blame here.
However: stunning
105MB of reads!

1702:14:15 pm

Openoffice: requests in flight

x­axis: seconds
y­axis: number
of bios in flight

18

Openoffice: moving backwards

x­axis: ms
y­axis: sectors
Highly zoomed,
so the sectors are
(somewhat) close
together.

Note the
backwards sense.

Note cache hits
right below.

1902:14:15 pm

Typical bootup

● Debian Woody, icewm desktop, startup

including Mozilla: 50 megabytes, 30

excluding
● Ubuntu H̀oary', including Firefox: 150

megabytes
● Amazingly, both WRITE in excess of 10

megabytes during boot – atime?
● noatime shaves 10 seconds off boot time

2002:14:15 pm

Latency histogram

Lots of 0­ms
hits elided
Pretty
healthy graph

21

Latency histogram 2

0­ms ==
IDE disk cache
hit

22

Latency outliers

“Room for study”
Part of this
is disk­parking

23

Now what?

● Easy way (not that easy): figure out which

sectors correspond to which files
● Coalesce requests based on statistics

measured earlier about disk-cache

behaviour
● Fire off big reads (linear: AIO only does

O_DIRECT, no page cache!)
● 1) Fire up program 2) ?? .. 3)Profit!!

2402:14:15 pm

The bad news

● This works and generates rather

impressive speedup to Firefox startup
● Bootup pretty slow though when we take

priming time into account
● Turns out many bio-requests can't be

traced back to files, because:
● Filesystem internals (dentries, block

mappings) also cause reads
2502:14:16 pm

The good news!

● Several groups are working on this

problem (U of Toronto)
● Given good measurements, solutions

should be forthcoming
● There are some oddities that appear

highly fixeable – sometimes Linux tries to

read from disk backwards!

2602:14:16 pm

Some possible solutions 1

● The royal solution: stuff page cache with blocks

and dentries – requires careful coordination

though. Write out on shutdown.
● Unionfs a ramdisk over the / so a number of

core files are in memory and read in one

stretch
● Instrument exec calls and 'read-ahead'

intelligently, based on bios seen
● Reorder binaries so they are read in consecutive

order 27

Possible solutions 2

● If there is still such a thing as a buffer-

cache, make submit_bio check it, and

return immediately
● We can then just concentrate on touching

the same sectors as we saw previously
● Does waste memory though

2802:14:16 pm

Toolset

● dumpstats: dumps everything
● dumpstats --bookmark: set bookmark
● dumpstats --since: dump since bookmark
● Available: RSN (end of this week)
● 40 line kernel patch + relayfs
● C++ stuff (does not burn the eyes)
● Gnuplot

2902:14:16 pm

Further information

● GPL tools will be available on

http://ds9a.nl/diskstat/
● http://netherlabs.nl/
● bert.hubert@netherlabs.nl
● BoF Friday on Instrumenting the kernel

– “ Locating system problems with dynamic

instrumentation” - Vara Prasad (IBM)

● I'll be around all week!
303002:14:16 pm

