The GALMON.EU Open Source & Open Data GNSS monitoring project

@PowerDNS_Bert / bert@hubertnet.nl (presentation)
& many contributors & station operators

High level goals

- Provide highly transparent, easily accessible data on all the world's Global Navigation Satellite Systems (GNSS)
- Use this data to provide real-time monitoring of performance
 - Including sending out actionable alerts
- Make available our data in relevant forms, both for monitoring and research:
 - Raw frames/words/strings/messages
 - Time-series database
 - $\circ \quad \mbox{Pre-configured dashboards and graphs}$
 - \circ $\hfill Live coverage/DOP maps of the world$
- Perform post-processing to create daily, weekly, monthly reports of targets like DOP, System-in-Space/Ranging error
- All this in hopes to increase the quality of the world's GNSS.

Current status

- >60 receivers around the world (Europe, Americas, Oceania, Asia, Africa, Tonga, Mauritius, Reunion, Hawaii, Guam)
- Increasing number of dual band timing receivers (>12)
- Products:
 - All receivers deliver "RINEX+"/RTCM+ data
 - Plus CNR, signal quality status
 - \circ $\:$ In addition, a full binary copy of each and every GNSS frame/message/word/string received
 - Time-series database of all parameters
 - Live alerting of GNSS issues (SISA/URA/URAI/FT changes, health, loss of signal)
- Status display on galmon.eu: per-SV stats, live *DOP map, live coverage map
- Graphs available on https://public.galmon.eu/ (user: guest, password: guest)
- Non-RTCM data is freely available to everyone
- RTCM data needs **privacy** agreement (not yet in place)

Current status: software

- Very lightweight receiver driver, running on every Linux/UNIX/OSX platform, favorite is Pi Zero W
- Large scale data store (50GB/week growth currently, total since August 2019 > 500GB)
- Analysis of ephemeris discontinuities (in time & space)
- Comparison of determined range & Doppler offset to ephemeris
- SP3 post-processing comparison
- Streaming analysis of all data to a time-series database
 - All parameters (clock corrections, ionospheric model, orbit elements, UTC/GPS time offsets)
- Graphing dashboard that feeds off the time-series database
- Stateful analysis for alerting (galmonmon)

Galmon.eu is a coordinated, crowd-sourced, open-source project, driven by wonderful volunteers & contributors.

Bert Hubert may head the project, but it would be nothing without the operators, volunteers and contributors.

Stations. Some of the red ones are not down but are multiple stations in one place, and a testing node there might be down. <u>https://galmon.eu/geo/</u>

This is the "show everything" view connects all stations with all monitored satellites. <u>https://galmon.eu/geo/</u>

This is a live HDOP/VDOP/PDOP or coverage map. The colors are for different views of the horizon. Red (not shown) means PDOP > 10 even with a 5 degree view of the horizon, yellow 20 degree. <u>https://galmon.eu/geo/coverage.html</u>

	best-tle	iod	eph-age-m	latest-disco	time-disco	sisa	health	alma-dist	∆UTC ns	sources	hqsources	db	ΔHz	prres	elev	last-seen-s
101	GSAT0210 (PRN E01)	104	85 minutes ago	8.7 cm	0.1 ns	312 cm	ok/ok/val/val	3.2 km	0.0 +0.0/d	17	4	15 - 47	-9.38	-1.52	5 - 61	a few second
281	GSAT0211 (PRN E02)	109	35 minutes ago	8.1 cm	0.0 ns	312 cm	ok/ok/val/val	0.8 km	0.0 +0.0/d	5	3	26 - 46	0.46	0.43	20 - 68	a few secon
0301	GSAT0212 (PRN E03)	111	15 minutes ago	2.0 cm	0.1 ns	312 cm	ok/ok/val/val	2.4 km	0.0 +0.0/d	33	20	25 - 47	203.32	0.65	6 - 66	a few secon
0401	GSAT0213 (PRN E04)	104	85 minutes ago	4.3 cm	0.2 ns	312 cm	ok/ok/val/val	1.0 km	0.0 +0.0/d	4	3	23 - 42	-26.11	0.17	18 - 51	a few secon
0501	GSAT0214 (PRN E05)	105	75 minutes ago	7.6 cm	0.0 ns	312 cm	ok/ok/val/val	2.1 km	0.0 +0.0/d	23	12	26 - 47	47.75	-1.97	3 - 84	a few secon
0701	GSAT0207 (PRN E07)	111	15 minutes ago	8.0 cm	0.0 ns	312 cm	ok/ok/val/val	1.5 km	0.0 +0.0/d	9	0	21 - 35			4 - 21	a few secon
0801	GSAT0208 (PRN E08)	111	15 minutes ago	5.8 cm	0.0 ns	312 cm	ok/ok/val/val	1.2 km	0.0 +0.0/d	24	11	24 - 47	3.84	-0.75	9 - 83	a few secon
981	GSAT0209 (PRN E09)	111	15 minutes ago	4.8 cm	0.1 ns	312 cm	ok/ok/val/val	2.3 km	0.0 +0.0/d	17	5	25 - 45	138.27	1.40	5 - 78	a few secon
101	GSAT0101 (PRN E11)	104	85 minutes ago	5.1 cm	-0.1 ns	312 cm	ok/ok/val/val	0.9 km	0.0 +0.0/d	4	3	29 - 42	-17.22	-0.40	11 - 35	a few seco
201	GSAT0102 (PRN E12)	104	85 minutes ago	5.5 cm	-0.2 ns	312 cm	ok/ok/val/val	0.3 km	0.0 +0.0/d	4	3	25 - 38	0.08	-0.13	32 - 87	a few seco
301	GSAT0220 (PRN E13)	111	15 minutes ago	5.1 cm	0.0 ns	312 cm	ok/ok/val/val	2.9 km	0.0 +0.0/d	31	18	20 - 50	6.18	0.78	10 - 69	a few seco
401	GSAT0202 (PRN E14)	111	15 minutes ago	5.3 cm	-0.1 ns	312 cm	test/test/val/val		0.0 +0.0/d	3	0	27 - 42			42 - 44	a few seco
501	GSAT0221 (PRN E15)	111	15 minutes ago	20.4 cm	0.1 ns	312 cm	ok/ok/val/val	0.7 km	0.0 +0.0/d	31	16	9 - 47	1.02	0.17	13 - 62	a few seco
1801	GSAT0201 (PRN E18)	106	65 minutes ago	13.9 cm	0.0 ns	312 cm	<pre>test/test/val/val</pre>		0.0 +0.0/d	4	0	27 - 49			16 - 64	a few seco
1901	GSAT0103 (PRN E19)	111	15 minutes ago	3.9 cm	-0.1 ns	312 cm	ok/ok/val/val	3.5 km	0.0 +0.0/d	2	0	26 - 33			15 - 45	a few seco
101	GSAT0215 (PRN E21)	111	15 minutes ago	2.7 cm	0.0 ns	312 cm	ok/ok/val/val	1.4 km	0.0 +0.0/d	14	5	16 - 48	-4.47	0.16	7 - 49	a few seco
2481	GSAT0205 (PRN E24)	111	15 minutes ago	3.6 cm	-0.1 ns	312 cm	ok/ok/val/val	1.6 km	0.0 +0.0/d	20	12	24 - 46	-256.14	-4.13	5 - 60	a few seco
2501	GSAT0216 (PRN E25)	106	65 minutes ago	9.0 cm	0.1 ns	312 cm	ok/ok/val/val	0.1 km	0.0 +0.0/d	13	4	21 - 47	-16.91	-4.13	7 - 76	a few seco
2601	GSAT0203 (PRN E26)	108	45 minutes ago	2.8 cm	0.0 ns	312 cm	ok/ok/val/val	0.9 km	0.0 +0.0/d	15	4	25 - 43	-9.06	-1.02	9 - 58	a few seco
2701	GSAT0217 (PRN E27)	109	35 minutes ago	3.8 cm	0.1 ns	312 cm	ok/ok/val/val	2.7 km	0.0 +0.0/d	4	1	28 - 37			2 - 27	a few seco
3001	GSAT0206 (PRN E30)	106	65 minutes ago	8.9 cm	0.0 ns	312 cm	ok/ok/val/val	1.0 km	0.0 +0.0/d	2	0	35 - 36			5 - 16	a few seco
3101	GSAT0218 (PRN E31)	105	75 minutes ago	7.7 cm	0.1 ns	312 cm	ok/ok/val/val	2.2 km	0.0 +0.0/d	21	14	17 - 44	107.29	-0.61	7 - 41	a few seco
3301	GSAT0222 (PRN E33)	111	15 minutes ago	9.1 cm	0.0 ns	312 cm	ok/ok/val/val	1.3 km	0.0 +0.0/d	5	3	20 - 47	0.44	-1.30	36 - 63	a few seco
3601	GSAT0219 (PRN E36)	111	15 minutes ago	3.5 cm	0.1 ns	312 cm	ok/ok/val/val	4.1 km	0.0 +0.0/d	4	2	24 - 45			15 - 82	a few seco

Last update: a few seconds ago. More information about this Galileo/GPS/BeiDou/Glonass open source monitor can be found here. Live observer map here, status (coverage, DOP) map here. Experimental Grafana dashboard on public.galmon.eu (user: guest, password: guest).

This is the main page, on <u>https://galmon.eu/</u> - in this page several outlier stations have not yet been filtered, causing large Dleta Hz values. Normally these track within <1Hz. Note that many SVs are observed by >10 receivers at a time.

Report	on 22	SVs from Mon,	13 Jan	2020 0	0:00:00	+000	0 to Mon,	20 Jan	2020 13:40:	00 +00	000
E01:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E02:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E03:	0.09%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E04:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E05:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E07:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E08:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E09:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E11:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E12:	0.09%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E13:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E15:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E19:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E21:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E24:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E25:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E26:	0.09%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E27:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E30:	0.18%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E31:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E33:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
E36:	0.00%	unobserved,	0.00%	unhealt	hy, 0.	00%	healthy,	0.00%	testing,	0.00%	napa
lot:	0.02%	unobserved,	0.00%	unhealt	ny, 0.	00%	nealthy,	0.00%	testing,	0.00%	napa

This is "the weekly Galileo report" generated by the "reporter" tool. It can make reports over arbitrary time periods.

This movie, generated with Matplotlib and our time-series database integration, shows the distribution of the Doppler residual and range-residual with respect to the broadcast orbit. It is clear all dots move around (0,0) which is good.

These alerts are generated by 'galmonmon', which in turn is connected to Twitter. The <u>https://twitter.com/gnss_changes</u> account tweets out live updates when GNSS conditions change. It is calibrated to send out a few alerts per (normal) day. On a bad day there are many more alerts.

This is a sample graph from our graphing server on <u>https://public.galmon.eu/</u> (user: guest, password: guest). This shows a day in which Galileo was somewhat late uploading new ephemerides and some SVs reached 3 hour old data. It can also be seen that four times an SV got issued a somewhat exceptional ephemeris, starting with an age of 0. This was the 22nd of January 2020. Note that our graphs are for GPS, GLONASS, BeiDou and Galileo, even though most examples in this presentation are Galileo.

Another graph from <u>https://public.galmon.eu</u> (user:guest, password: guest), showing the somewhat mysterious oscillation in the af1 clock drift parameter.

 ephemeris, updated every frame (so, a lot) iod-live: current IOD number eph-age: age of this ephemeris (distance from t0e) sisa, updated every frame value: raw Galileo SISA value gpsura, updated every frame value: raw GPS URA value beidouurai, updated every frame value: raw BeiDou URAI value (more or less same as GPS) FT, GLONASS specific FT value (SISA) clock, clock information, updated every frame offset_ns: time offset of this clock wrt GST/GPS time/Beidou time to: to of the clock parameters af0, af1, af2: clock polynomial parameters, in Galileo raw units, even for non-galileo SVs clock_jump_ns value: number of nanoseconds jump in clock correction from this ephemeris to the previous one iono, ionospheric parameters ai0, ai1, ai2: Galileo NeQuick parameters ai0, ai1, ai2: Galileo NeQuick parameters ai0, ai1, ai2: Galileo NeQuick parameters ai0, ai1, ai2: Galileo Values BGDE1E5b in raw galileo values BGDE1E5b in raw galileo values galbed, Galileo-specific health bits, values according to ICD e1bhs e5bhs e1bdvs 	 gpshealth, GPS-specific health bits value beidouhealth, BelDou-specific health bits sath1 glohealth, GLONASS-specific health bits Bn glo_taun_ns, GLONASS-specific TauN value, in nanoseconds FT, GLONASS specific FT value utcoffset, for GPS, Gallieo, Beidou a0, in Gallieo units delta, in nanoseconds t0t, in seconds gpsoffset, for Gallieo, Beidou a0, in Gallieo units delta, in nanoseconds t0t, in seconds gpsoffset, for Gallieo, Beidou does not fill this out. GPS doesn't need to a0g, in Gallieo units a1g, in Gallieo
 e5bdvs 	

This is an overview of all metric stored in the time-series database. Our data goes back to August 2019. All these numbers can easily be plotted or analysed from Jupyter/Python/Matplotlib/Pandas.

This is a sample Matplotlib graph showing the Kalman filtered Doppler residual (in orange) versus the noisy measurements. In red the ephemeris age, The colors of the dots reflect different receivers.

Some sample source code showing how data can be processed. The timeseries database is influxdb which has a Pandas connector.

Our stations span three orders in magnitude in price. A favorite is a \$8 AliExpress u-blox 8 receiver, coupled with a Raspberry Pi Zero running the receiver software. Shown right one of the best stations contributing data to the project.

Offline capabilities

- The software can post-process its data once SP3 files are available
- This allows for determination of SISE/URE for all constellations
- Further processing makes it possible to graph global or WUL SISE numbers
- Similarly, data can be post-processed to show distribution of xDOP values for all constellations and combinations.

Why??

- Why compete with IGS, CORS, GRC?
- Honest explanation: I didn't know
 - Not easy to find, not easy to understand. I did look before I started!
 - Proprietary standards (NTRIP, RTCM, EGNOS/WAAS) do not help
- Now that we exist, our unique contributions:
 - Full streaming and live copy of each and every GNSS satellite around the world, every message (archive available)
 - We strongly focus on not "reporting what the receiver thinks" (RINEX) but try to report each and every bit (although we also generate RINEX)
 - Live alerts
 - Reporting
 - Software platform with easy access to all data using "big data" standard protocols

Next steps

- Our focus is on completing our role as a third party "GNSS Reference Centre"
- We can currently only measure relative time and orbit errors (from one ephemeris to the next)
 - Lack of (UTC) time standard
- Work is ongoing to improve our orbital analysis, its current sensitivity (~2 meter) is not sensitive enough to be useful
 - Missing tropospheric model
- Expand beyond Ublox 8/9.

More information

- Twitter: <u>https://twitter.com/GalileoSats</u>, <u>https://twitter.com/GNSS_Changes</u>
- Some background on the "why": https://berthub.eu/articles/posts/update-2019-powerdns-galileo-ripe-doh/

The GALMON.EU GNSS monitoring project

@PowerDNS_Bert / bert@hubertnet.nl (presentation)
& many contributors & station operators

