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Agenda
 Who am I?
 Software innovation – what are we talking 

about?
 We are customers of universities, factories of 

the hard sciences
 ”The secret deal”

 What we get out of universities & science
 What we'd love to get out of it
 Summary
 Drinks



  

Who am I?

 Applied Physics, dropped out 
somewhat beyond ”bachelor”

 Board member of VvTP, bit 
like GEWIS I think

 PowerDNS: Powers 40% of 
European domain names

 Research & Development

 ”Experts in IT Security – for a 
more secure society”



  

PowerDNS
 DNS converts ”www.tue.nl” into 131.155.2.83
 PowerDNS is the DNS server of around 

30%-50% of all European domains, in use by 
the largest DNS operators in the world

 You 'use' it every day

 First DNS server to be able to run from a 
database

 ”They said it could not be done”

 First DNS server with ”easy DNSSEC”
 Powers Wikipedia with module by TU/e 

graduate Mark Bergsma (thanks!)

http://www.tue.nl/


  

Fox-IT
 Supplies governments, financial institutions 

and others with IT security training, solutions 
and services. Around 100 ”nerds, geeks and 
hackers”

 High-end cryptography, steward to the Philips 
Cryptosystems department

 Audits, Forensic investigation
 Fighting cybercrime
 Replay: Innovative communication analysis 

tools 

 Replay was launched in 2006 and is now one 
of the most advanced products on the market



  

Fox-IT & Universities

 We get most of our star performers from 
universities

 Frequent internships
 Students also graduate with us

 As a drop out, it is highly pleasing to help 
someone else graduate!

 One of our core products, the Data Diode, 
originated as a graduation project

 In return we produce ”industry relevance” 
letters...



  

This presentation
 I've been asked to hold a ”stimulating 

presentation” that will provoke interaction 
with the audience

 So please interrupt if you don't agree!
 Or if you agree and have a good example, 

please also interrupt!

 During the entire presentation, please keep 
in mind that I'm a great fan of science!

 But I've been tasked to make sure you have 
something to talk about over the drinks that 
follow this presentation ;-)

 So here goes



  

Software innovation: what 
are we talking about

 We often hear about ”ICT” or ”IT” field
 This, sadly, comprises everything from 

installing a mouse driver to creating a space 
based navigation system

 Quite a lot of IT is in fact no more exciting 
than assembling IKEA furniture!

 ”Large” does not mean innovative. Prime 
example, government payrolling system 
('P2000')

 Non-innovative ICT mostly requires very 
good planning – it is not easy!



  

Software innovation
 Doing things that have not been done before

 Not at all (example: first ”internet”)
 Not at that scale (example: google)
 Not under such constraints (example: iphone)

 Unsure if it can be done at all
 First internet melted down 

 It is often not even very clear what needs to 
be done

 Might change during implementation

 1% innovation, 99% perspiration
 Exciting!



  

I am a customer of 
Universities

 Thank you!
 We are grateful customers of the education 

you provide our future employees
 For free too!
 We often pay 1500 euros/day for educating 

people – consider a master's degree to cost 
650k euros

 Example, Intel recently indicated it would 
close a plant if the local EE faculty would 
close down

 It is immediately relevant



  

A customer of Universities

 Managing directors: Mathematics, Physics
 CTO Replay: Quantum Physics
 Founder Replay: Physics dropout
 Lead developer: Physics
 Lead UI designer: computer science
 Most programmers either finished a 

university degree or spent a lot of time @ uni
 Financial Director: Quantum Physics 



  

What do we get out of 
universities & science

 Almost no direct innovation
 oops

 Graduates with some relevant skills
 People with the right vocabulary & 

background
 Graduates with a scientific mindset
 People that know the answer might not be 

in the book
 Or that it might be wrong



  

Innovations from computer 
science

 Direct results applicable in industry are 
actually quite rare (but very important)

 We asked all Fox-IT programmers, they 
came up with:

 MESI protocol (1984)
 Proven cryptography
 Graph coloring theory
 Halting problem

 Worryingly, this does not contain a lot of 
recent developments



  



  

Indirect scientific 
contributions

 In short this is almost everything we do
 WWW came out of CERN
 GNU came out of MIT
 Linux originated exclusively within universities
 Bell labs (C, C++, the Transistor, need I go 

on?)

 All the very words we use come from 
academia

 And a lot of our culture too
 Case in point: Edsger Dijkstra ('Goto 

considered harmful' – or not!)



  

Something business would 
never do

 Two wonderful academic areas of research:

 Quantum computing ('there is no quantum 
computer yet')

 Post-quantum cryptography ('for when we get 
one')

 In Eindhoven terms: Schnorr versus Tanja Lange & 
Dan Berstein

 When this is done, and eventually the physicists 
give us the quantum computer, we'll be ready for it

 Science will have provided the infrastructure without 
being a flashy 'innovation'



  

The scientific mindset
 Large computing environments are complex 

systems with dynamic behaviour
 Ask Gödel

 Errors can occur at compile time (good), 
during tests (good) or in full operation (bad)

 When studying a misbehaving system, the 
full 'scientific method' needs to be employed

 Hypothesis, experiments, no interest in 
theories that can't be falsified etc

 Physical scientists are actually closer to this 
world – we actually talk about 'instrumenting' 
code



  

The ”edge of science”
 When doing new things.. you are doing new things

 Sounds so simple
 Graduates of universities have had that experience 

too

 The answer of the experiment is not known
 The goal of the research is to learn new things
 No one told you the ”how”

 In science, it is clear that while the answer will be 
there, it might not be in the book

 You are writing the book
 (the tools may be in the book)



  

Overall, it is working
 We have no other source of critical thinking 

employees!
 Polytechnic graduates typically reach for the 

book when asked to innovate 

 The scientific method works very well on any 
complex system

 And you have to believe in it → witch docter 
otherwise

 Without academia, we wouldn't even have 
words to talk about what we are doing

 We also get some directly useful skills & 
innovation



  

So what IS a university?
 Secret pact (in descending order of loftiness)

 (Fundamental) Science
 Satisfy student's curiosity (& need for beer)
 Get students marketable skills (& a job)

 Conversely, get us companies useful employees
 Keep everybody at university employed

 There is an interchange between these four

 ”Universities get funding because society finds it worthwhile 
to do so”

 Lighter phones, cure for cancer, environmentally safe 
energy, cars that run 300kph etc

 Needs to get people jobs & industry employees 
too!



  

Mathematics & CS
 (Pure) mathematics has long had a difficult 

relation with industry
 Rarely a business need to prove Fermats last 

theorem
 Cryptography has (slightly) wider practical 

applications
 However, mathematicians are almost 

guaranteed to be so smart you take the risk ;-)

 CS sits at a very difficult cross roads
 ”Too theoretical to be practical, too practical 

to guarantee the brilliance that makes up for 
that”



  

Some Dijkstra quotes

 Google for ”Dijkstra quotes computer science”

 'Computer Science is no more about computers than 
astronomy is about telescopes.'

 'I mean, if 10 years from now, when you are doing 
something quick and dirty, you suddenly visualize that I am 
looking over your shoulders and say to yourself "Dijkstra 
would not have liked this", well, that would be enough 
immortality for me.' - he got that.

 'The competent programmer is fully aware of the strictly 
limited size of his own skull; therefore he approaches the 
programming task in full humility, and among other things he 
avoids clever tricks like the plague'



  

Perspective on CS in 
Software Innovation

 University CS education offers us students 
with a mix of: useful skills, scientific 
knowledge, ”knowing the answer is not in the 
book”, scientific method

 This mix is not optimized for having an 
innovative software industry

 And indeed, we almost have none in The 
Netherlands

 Polytechnic education offers us another, 
equally unoptimal mix

 We do have a large ”IT Industry”..



  

The problem

 We need a mix of scientifically curious 
people who can think in a disciplined fashion 
about complicated systems ('the scientific 
method')

 We also need people with a vast amount of 
skills!

 Actual programmers! That know about real 
hardware! (not 'MMIX')

 In our experience, there is not a single 
school nearby that educates people to 
become actual non-IKEA programmers



  

The explanation

 CS departments here educate people to 
design software 

 Teach theory on how to do this
 Do some implementation in order to further 

this design ability
 Often on research platforms

 The actual implementation is subservient to 
the design

 May be outsourced, or performed by less 
educated personnel

 ”The rest is an implementation detail”



  

The real world

 In the real world.. innovative software is not 
designed first by designers

 And then implemented by ”programmers”

 As far as I know this has never worked for 
doing anything new

 It has worked for ”IKEA Programming”
 Oddly enough, the IKEA Programming at 

IKEA was a mess!

 We can't deal with designers from university 
that aren't actually skilled at implementing!



  

So where DO programmers 
come from?

 There are ”natural born programmers” that 
soak up the things they did not yet know from 
university

 Is a good place for it

 In physical sciences, the student is often 
tasked with programming the experimental 
software, and in the course of doing that 
becomes a programmer

 If you pick the right combination of courses & 
specializations, you can come a long way



  

Even more Dijkstra

 ”Nowadays machines are so fast and stores are so 
huge that in a very true sense the computations we can 
evoke defy our imagination. Machine capacities now 
give us room galore for making a mess of it.
(...)
Developing the austere intellectual discipline of 
keeping things sufficiently simple is in this 
environment a formidable challenge, both 
technically and educationally.” - 1984, EWD 898

 This kind of education is vital!

 Actually, in EWD 898, Dijkstra said almost anything that 
I've wanted to say, except better

 And from another direction



  

The 'austere discipline' best 
theory school

 In one vision, we get universities that teach 
Computer Science, or even better, 
”Informatics”, in such a rigorous way that the 
graduates are so infused with theory & 
knowledge that they will have fully satisfied 
their curiosity, and are so well educated that 
adapting to the ”real world” is merely a 
special case

 These graduates would be hired merely 
because they had proven to be able to 
survive such a thorough education

 This has happened with Physics for example



  

The ”silicon valley” school
 In the second vision, the education shifts 

towards practical tools, supported by the 
theory needed to fully understand what is 
going on

 An education would in that case contain a 
large amount of 'actual implementation'

 Based on technologies that can actually be 
put on a resume to get a job

 This would for example include things like 
'proper use of revision control, bug trackers, 
regression tests, agile development and 
interfacing with Open Source projects'



  

Visions compared
 The ”theory school” is only for the best 

students
 It stands on the fact that graduates are 

theoretically so well educated that they can be 
expected to deal with everything

 The ”trade school” however is not easy 
either. It includes relevant theory too. Being a 
”master craftsman” is only possible with 
sufficient talent

 Specifically, the trade school is not 
polytechnic

 As an example: high performance concurrent 
code needs to know about MESI! (DJB)



  

Where we are today
 Most departments in The Netherlands sit 

unconfortably between the two visions
 Partially due to a misunderstanding what the 

relation is between ICT & Innovation
 ”IKEA IT” versus ”ASML IT”

 Eindhoven may in fact have the best fit with 
its local industry

 Seen from The Hague and Amsterdam, this is 
quite enviable!

 The innovative software industry may have 
been happy with the deal so far

 Non-innovative definitely



  

It may also be a Dutch thing
 We struggle with innovation
 Our government thinks innovation can be 

stimulated with tax breaks
 In fact, innovation has a lot to do with 

mountain climbing
 Why do we climb the mountain? Because it is 

there!
 Not because someone made it tax free!

 Should a university be a tool of industry?
 Almost a dirty question!
 It is the case though..



  

It is also an industry thing

 The innovative software industry is mostly 
small companies (and small anyhow)

 And grouped together with the non-innovative 
ICT industry (where all the money is – and 
they get their Java programmers!)

 If we want universities to deliver more ”trade 
skills”, we should be supplying more input 
and probably even courses & professors!

 Oh, and we don't want to pay for it ourselves
 The university was free already (or, more 

precisely, we feel we are already paying for it)



  

Summarising
 Summarising, on the (in)utility of science in software 

innovation

 I love the highly educated people that challenge existing 
wisdoms and realize that new things require new thinking!

 I love the scientific method

 I could not even talk abour our industry without using the 
vast body of knowdledge generated by science

 And there are some specific academic highlights
 I also appreciate the 'ready to use' skills of graduates

 I do think the mix is not optimized though

 And we'd all have to work on that if we want to 
improve things

 But please keep doing what you were doing → it 
works ;-)



  

Questions?
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