

Science in Software
Innovation

Bert Hubert

Thoughts on the (non-)utility of science in
software innovation

http://tinyurl.com/innoscience

Agenda
 Who am I?
 Software innovation – what are we talking

about?
 We are customers of universities, factories of

the hard sciences
 ”The secret deal”

 What we get out of universities & science
 What we'd love to get out of it
 Summary
 Drinks

Who am I?

 Applied Physics, dropped out
somewhat beyond ”bachelor”

 Board member of VvTP, bit
like GEWIS I think

 PowerDNS: Powers 40% of
European domain names

 Research & Development

 ”Experts in IT Security – for a
more secure society”

PowerDNS
 DNS converts ”www.tue.nl” into 131.155.2.83
 PowerDNS is the DNS server of around

30%-50% of all European domains, in use by
the largest DNS operators in the world

 You 'use' it every day

 First DNS server to be able to run from a
database

 ”They said it could not be done”

 First DNS server with ”easy DNSSEC”
 Powers Wikipedia with module by TU/e

graduate Mark Bergsma (thanks!)

http://www.tue.nl/

Fox-IT
 Supplies governments, financial institutions

and others with IT security training, solutions
and services. Around 100 ”nerds, geeks and
hackers”

 High-end cryptography, steward to the Philips
Cryptosystems department

 Audits, Forensic investigation
 Fighting cybercrime
 Replay: Innovative communication analysis

tools

 Replay was launched in 2006 and is now one
of the most advanced products on the market

Fox-IT & Universities

 We get most of our star performers from
universities

 Frequent internships
 Students also graduate with us

 As a drop out, it is highly pleasing to help
someone else graduate!

 One of our core products, the Data Diode,
originated as a graduation project

 In return we produce ”industry relevance”
letters...

This presentation
 I've been asked to hold a ”stimulating

presentation” that will provoke interaction
with the audience

 So please interrupt if you don't agree!
 Or if you agree and have a good example,

please also interrupt!

 During the entire presentation, please keep
in mind that I'm a great fan of science!

 But I've been tasked to make sure you have
something to talk about over the drinks that
follow this presentation ;-)

 So here goes

Software innovation: what
are we talking about

 We often hear about ”ICT” or ”IT” field
 This, sadly, comprises everything from

installing a mouse driver to creating a space
based navigation system

 Quite a lot of IT is in fact no more exciting
than assembling IKEA furniture!

 ”Large” does not mean innovative. Prime
example, government payrolling system
('P2000')

 Non-innovative ICT mostly requires very
good planning – it is not easy!

Software innovation
 Doing things that have not been done before

 Not at all (example: first ”internet”)
 Not at that scale (example: google)
 Not under such constraints (example: iphone)

 Unsure if it can be done at all
 First internet melted down

 It is often not even very clear what needs to
be done

 Might change during implementation

 1% innovation, 99% perspiration
 Exciting!

I am a customer of
Universities

 Thank you!
 We are grateful customers of the education

you provide our future employees
 For free too!
 We often pay 1500 euros/day for educating

people – consider a master's degree to cost
650k euros

 Example, Intel recently indicated it would
close a plant if the local EE faculty would
close down

 It is immediately relevant

A customer of Universities

 Managing directors: Mathematics, Physics
 CTO Replay: Quantum Physics
 Founder Replay: Physics dropout
 Lead developer: Physics
 Lead UI designer: computer science
 Most programmers either finished a

university degree or spent a lot of time @ uni
 Financial Director: Quantum Physics

What do we get out of
universities & science

 Almost no direct innovation
 oops

 Graduates with some relevant skills
 People with the right vocabulary &

background
 Graduates with a scientific mindset
 People that know the answer might not be

in the book
 Or that it might be wrong

Innovations from computer
science

 Direct results applicable in industry are
actually quite rare (but very important)

 We asked all Fox-IT programmers, they
came up with:

 MESI protocol (1984)
 Proven cryptography
 Graph coloring theory
 Halting problem

 Worryingly, this does not contain a lot of
recent developments

Indirect scientific
contributions

 In short this is almost everything we do
 WWW came out of CERN
 GNU came out of MIT
 Linux originated exclusively within universities
 Bell labs (C, C++, the Transistor, need I go

on?)

 All the very words we use come from
academia

 And a lot of our culture too
 Case in point: Edsger Dijkstra ('Goto

considered harmful' – or not!)

Something business would
never do

 Two wonderful academic areas of research:

 Quantum computing ('there is no quantum
computer yet')

 Post-quantum cryptography ('for when we get
one')

 In Eindhoven terms: Schnorr versus Tanja Lange &
Dan Berstein

 When this is done, and eventually the physicists
give us the quantum computer, we'll be ready for it

 Science will have provided the infrastructure without
being a flashy 'innovation'

The scientific mindset
 Large computing environments are complex

systems with dynamic behaviour
 Ask Gödel

 Errors can occur at compile time (good),
during tests (good) or in full operation (bad)

 When studying a misbehaving system, the
full 'scientific method' needs to be employed

 Hypothesis, experiments, no interest in
theories that can't be falsified etc

 Physical scientists are actually closer to this
world – we actually talk about 'instrumenting'
code

The ”edge of science”
 When doing new things.. you are doing new things

 Sounds so simple
 Graduates of universities have had that experience

too

 The answer of the experiment is not known
 The goal of the research is to learn new things
 No one told you the ”how”

 In science, it is clear that while the answer will be
there, it might not be in the book

 You are writing the book
 (the tools may be in the book)

Overall, it is working
 We have no other source of critical thinking

employees!
 Polytechnic graduates typically reach for the

book when asked to innovate

 The scientific method works very well on any
complex system

 And you have to believe in it → witch docter
otherwise

 Without academia, we wouldn't even have
words to talk about what we are doing

 We also get some directly useful skills &
innovation

So what IS a university?
 Secret pact (in descending order of loftiness)

 (Fundamental) Science
 Satisfy student's curiosity (& need for beer)
 Get students marketable skills (& a job)

 Conversely, get us companies useful employees
 Keep everybody at university employed

 There is an interchange between these four

 ”Universities get funding because society finds it worthwhile
to do so”

 Lighter phones, cure for cancer, environmentally safe
energy, cars that run 300kph etc

 Needs to get people jobs & industry employees
too!

Mathematics & CS
 (Pure) mathematics has long had a difficult

relation with industry
 Rarely a business need to prove Fermats last

theorem
 Cryptography has (slightly) wider practical

applications
 However, mathematicians are almost

guaranteed to be so smart you take the risk ;-)

 CS sits at a very difficult cross roads
 ”Too theoretical to be practical, too practical

to guarantee the brilliance that makes up for
that”

Some Dijkstra quotes

 Google for ”Dijkstra quotes computer science”

 'Computer Science is no more about computers than
astronomy is about telescopes.'

 'I mean, if 10 years from now, when you are doing
something quick and dirty, you suddenly visualize that I am
looking over your shoulders and say to yourself "Dijkstra
would not have liked this", well, that would be enough
immortality for me.' - he got that.

 'The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things he
avoids clever tricks like the plague'

Perspective on CS in
Software Innovation

 University CS education offers us students
with a mix of: useful skills, scientific
knowledge, ”knowing the answer is not in the
book”, scientific method

 This mix is not optimized for having an
innovative software industry

 And indeed, we almost have none in The
Netherlands

 Polytechnic education offers us another,
equally unoptimal mix

 We do have a large ”IT Industry”..

The problem

 We need a mix of scientifically curious
people who can think in a disciplined fashion
about complicated systems ('the scientific
method')

 We also need people with a vast amount of
skills!

 Actual programmers! That know about real
hardware! (not 'MMIX')

 In our experience, there is not a single
school nearby that educates people to
become actual non-IKEA programmers

The explanation

 CS departments here educate people to
design software

 Teach theory on how to do this
 Do some implementation in order to further

this design ability
 Often on research platforms

 The actual implementation is subservient to
the design

 May be outsourced, or performed by less
educated personnel

 ”The rest is an implementation detail”

The real world

 In the real world.. innovative software is not
designed first by designers

 And then implemented by ”programmers”

 As far as I know this has never worked for
doing anything new

 It has worked for ”IKEA Programming”
 Oddly enough, the IKEA Programming at

IKEA was a mess!

 We can't deal with designers from university
that aren't actually skilled at implementing!

So where DO programmers
come from?

 There are ”natural born programmers” that
soak up the things they did not yet know from
university

 Is a good place for it

 In physical sciences, the student is often
tasked with programming the experimental
software, and in the course of doing that
becomes a programmer

 If you pick the right combination of courses &
specializations, you can come a long way

Even more Dijkstra

 ”Nowadays machines are so fast and stores are so
huge that in a very true sense the computations we can
evoke defy our imagination. Machine capacities now
give us room galore for making a mess of it.
(...)
Developing the austere intellectual discipline of
keeping things sufficiently simple is in this
environment a formidable challenge, both
technically and educationally.” - 1984, EWD 898

 This kind of education is vital!

 Actually, in EWD 898, Dijkstra said almost anything that
I've wanted to say, except better

 And from another direction

The 'austere discipline' best
theory school

 In one vision, we get universities that teach
Computer Science, or even better,
”Informatics”, in such a rigorous way that the
graduates are so infused with theory &
knowledge that they will have fully satisfied
their curiosity, and are so well educated that
adapting to the ”real world” is merely a
special case

 These graduates would be hired merely
because they had proven to be able to
survive such a thorough education

 This has happened with Physics for example

The ”silicon valley” school
 In the second vision, the education shifts

towards practical tools, supported by the
theory needed to fully understand what is
going on

 An education would in that case contain a
large amount of 'actual implementation'

 Based on technologies that can actually be
put on a resume to get a job

 This would for example include things like
'proper use of revision control, bug trackers,
regression tests, agile development and
interfacing with Open Source projects'

Visions compared
 The ”theory school” is only for the best

students
 It stands on the fact that graduates are

theoretically so well educated that they can be
expected to deal with everything

 The ”trade school” however is not easy
either. It includes relevant theory too. Being a
”master craftsman” is only possible with
sufficient talent

 Specifically, the trade school is not
polytechnic

 As an example: high performance concurrent
code needs to know about MESI! (DJB)

Where we are today
 Most departments in The Netherlands sit

unconfortably between the two visions
 Partially due to a misunderstanding what the

relation is between ICT & Innovation
 ”IKEA IT” versus ”ASML IT”

 Eindhoven may in fact have the best fit with
its local industry

 Seen from The Hague and Amsterdam, this is
quite enviable!

 The innovative software industry may have
been happy with the deal so far

 Non-innovative definitely

It may also be a Dutch thing
 We struggle with innovation
 Our government thinks innovation can be

stimulated with tax breaks
 In fact, innovation has a lot to do with

mountain climbing
 Why do we climb the mountain? Because it is

there!
 Not because someone made it tax free!

 Should a university be a tool of industry?
 Almost a dirty question!
 It is the case though..

It is also an industry thing

 The innovative software industry is mostly
small companies (and small anyhow)

 And grouped together with the non-innovative
ICT industry (where all the money is – and
they get their Java programmers!)

 If we want universities to deliver more ”trade
skills”, we should be supplying more input
and probably even courses & professors!

 Oh, and we don't want to pay for it ourselves
 The university was free already (or, more

precisely, we feel we are already paying for it)

Summarising
 Summarising, on the (in)utility of science in software

innovation

 I love the highly educated people that challenge existing
wisdoms and realize that new things require new thinking!

 I love the scientific method

 I could not even talk abour our industry without using the
vast body of knowdledge generated by science

 And there are some specific academic highlights
 I also appreciate the 'ready to use' skills of graduates

 I do think the mix is not optimized though

 And we'd all have to work on that if we want to
improve things

 But please keep doing what you were doing → it
works ;-)

Questions?

Science in Software
Innovation

Bert Hubert

Thoughts on the (in)utility of science in software
innovation

http://tinyurl.com/innoscience

hubert@fox-it.com / bert.hubert@netherlabs.nl
+31622440095

http://tinyurl.com/innoscience
mailto:hubert@fox-it.com
mailto:bert.hubert@netherlabs.nl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

