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Executive summary 

 

Studies of earthquake catalogues for naturally occurring seismicity led to the formulation of the 
Gutenberg-Richter law [1] which states that the probability P(m) that an observed event in a 

sequence of earthquakes has a  moment magnitude greater than m satisfies the relation P(m) = 
exp {-bln(10)(m – m0)}, where m0 is the observation threshold. Evidence has emerged since the 
formulation of the law that the same relation applies for induced seismicity caused by human 
activity, an observation, together with the power-law character of the law when translated into 
moments rather than moment magnitudes, that the Earth’s crust may be in a self-organized 
critical state [2]. The use of a robust method for estimating the value of b from seismic data is 
crucial for quantifying the risk of rare but powerful events. In the case of the Groningen field, 
seismic activity due to gas production started in 1991 and has continued ever since. Moment 
magnitude data is provided by KNMI (the Dutch Meteorological Institute) and is rounded to the 
nearest 0.1. This means that the data has to be regarded as being binned, with the bin boundaries 
located at odd multiples of 0.05.  

 

In this report the maximum likelihood estimate is applied to this binned data and a maximum 
likelihood estimator bMLE is obtained for the whole catalogue, and various temporal and spatial 
subsets. We remark that only events with magnitude greater or equal to 1.5 and occurring after 
the end of April 1995 are considered in this analysis, as only for such events can reliable detection 
be assured [3]. The fact that the data bins are of equal width in moment-magnitude space means 
that bMLE can be determined analytically. Monte-Carlo simulations of synthetic catalogues are used 
to determine estimates of the error in bMLE. 

 

The main conclusions of this study are the following: 

 
1. The value of bMLE for the entire Groningen catalogue (1st January 1995 – 31st December 

2014) is consistent with the commonly accepted value b = 1. 

2. While a subdivision of the catalogue into four subsets of equal numbers of events 
suggests more variability in the maximum likelihood estimator for the subsets than would 
be expected if the b-value of the underlying process were constant, a closer examination, 
involving further subdivisions of the catalogue, and the use of 95% confidence intervals 
obtained using simulated data, does not show any systematic dependence of b value on 
event rate. 

3. Focusing on regions of 5 km radius centered on Loppersum and Ten Boer, we find that, 

while the bMLE for Ten Boer is consistent with b = 1, the bMLE for Loppersum is 

significantly lower, to the extent that we can be 99.9% confident that the b value of the 

underlying process is less than 1.  

4. The temporal sequence of events for each of the regions around Loppersum and Ten 

Boer is split into two equal sub-catalogues and the value of bMLE determined for each sub-

catalogue. For both the Loppersum and Ten Boer regions, the two values of bMLE were 

found to be consistent with an underlying b that is unchanging in time.  
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1. Introduction 

 

The moment magnitude m is a logarithmic scale unit used to describe seismic moment M and has 
no physical significance in itself. Other examples of logarithmic scale units are decibels for 
acoustic energy, stellar magnitude for star brightness and gauge for wire diameter. The moment 
magnitude m corresponding to a seismic moment M is given by [4] 

 

 { } dMMm c /)/(log10=           (1.1) 

 

In Eq. (1.1), d is a dimensionless constant with the value 1.5 and Mc = 1.259 × 109 N-m. We note 
that Eq. (1.1) can also be written as 

 

 { } { })10ln(/)/ln( dMMm c=           (1.2) 

 

According to the Gutenberg-Richter law, the probability P(m) that an observed event in a 
sequence of earthquakes has a  moment magnitude greater than m satisfies the relation 

  

 )})(10ln(exp{)( 0mmbmP −−=          (1.3) 

 

where m0 is the observation threshold. If M0 is the threshold seismic moment corresponding to 
m0, we have, from Eq. (1.2), 

 

 { } { })10ln(/)/ln( 00 dMMm c=          (1.4) 

 

Subtracting Eq. (1.4) from Eq. (1.2), and rearranging the right-hand side yields 

 

 { } { })10ln(/)/ln( 00 dMMmm =−          (1.5) 

 

Substituting Eq. (1.5) into Eq. (1.3) yields the result 

 

 β−== )/()()( 0MMmPMF           (1.6) 

 

where db /=β              (1.7) 

 

and F(M) denotes the probability that the seismic moment of an observed event is greater than 

M. For induced seismicity, a commonly accepted value of b is unity, corresponding to a β value 

of 2/3. The distribution F(M) is a long-tailed Pareto distribution and has infinite variance for β ≤ 

2 and infinite mean for β ≤ 1. Since the threshold for reliable detection of a seismic event can be 

specified, F(M) can be regarded as a one-parameter distribution with parameter β. We also note 
that Eq. (1.6) allows for M to be unbounded, which is unphysical. For the Groningen field, upper 
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bounds on the maximum possible value of M have been specified [3], but such an event is so rare 
that the maximum moment of an observed event in the Groningen catalogue to date is far below 
it. Hence the existence of a “corner moment”, at which F(M) starts to reduce at a rate faster than 
the long tail in Eq. (1.6), cannot be inferred from the data. The focus of this report is the 

estimation of the parameter β from the observed data (which directly gives b via Eq. 1.7). This is 
done both for the entire catalogue, and also for temporal and spatial subsets.  

 

Chapter 2 describes the methodology used, which employs the maximum likelihood estimator, 
and shows that this quantity can be evaluated analytically. Chapter 2 also addresses the estimation 
of error in the estimate, which is obtained using simulated catalogues. Other methods of 
obtaining this error, and also the bias in the maximum likelihood estimator, are outlined in the 
appendix.  

 

The results are presented in Chapter 3, which contains estimates of b value for the entire 
catalogue, temporal subsets of it, and for two subregions centered around Loppersum and Ten 
Boer. Chapter 4 contains the conclusions and recommendations for future work.  
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2. Maximum Likelihood Estimator for Binned Seismic Data  

 

As mentioned in the introduction, we take magnitude 1.5 to be the threshold of reliable 
observation. Since earthquake magnitudes are rounded to the nearest 1.5, this corresponds to a 
bin spanning a range of magnitudes 1.45 to 1.55. Multiplying Eq. (1.5) by dln(10), exponentiating 
and rearranging, we obtain 

 

 0100

dm

cMM =             (2.1) 

 

Setting m0 =1.45,  d = 1.5 and Mc = 1.259 × 109 N-m in Eq. (2.1), we obtain 

 

 11

0 10884.1 ×=M  N-m           (2.2) 

 

We shall work with the normalized moment 

 

 0/ MMx =             (2.3) 

This means that the first bin for x starts at x = 1 and ends at α, where 

 

 413.11010
15.0.1.0 === dα           (2.4) 

 

The kth bin runs from x = αk-1 to αk. If the nth bin is the last non-empty bin, all the empty bins 

following it are included in the nth bin, so that it extends from x = αn-1 to ∞. The probability pk 
that an event falls within the nth bin is given by 

 

 )()( 1 k

C

k

Ck FFp αα −= − ; k = 1, 2 … n – 1       (2.5a) 

 

 )( 1−= n

Cn Fp α             (2.5b) 

 

where (cf Eq. 1.6) 

 

 β−= xxFC )(             (2.6) 

 

It follows that 

 

 kk

kp
ββ αα −−− −= )1( ; k = 1, 2 … n – 1        (2.7a) 

 

 )1( −−= n

np
βα             (2.7b) 
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For a catalogue containing N events, the probability that bins 1, 2 to n contain r1, r2 to rn events is 
given by  

 

 { }∏
=

=
n

k

k

r

kn rpNrrrP k

1

21 !/!)...,(          (2.8) 

 

where Nr
n

k

k =∑
=1

             (2.9) 

 

If we are given the rk and wish to make inferences about the pk, the right-hand side of Eq. (2.8) 
can be expressed as a likelihood function L(p1, p2…pn). That is 

 

 { }∏
=

=
n

k

k

r

kn rpNpppL k

1

21 !/!)...,(          (2.10) 

 

According to the maximum likelihood method, the best value of the parameter β controlling the 
pk that fits the observations (the values of rk) is the one that maximizes L(p1, p2 … pn). Assuming 

that L is a smooth function of β, β maximizes L locally if 

 

 0=
∂

∂

β

L
             (2.11) 

 

and 0
2

2

<
∂

∂

β

L
             (2.12) 

 

We now show that the value of β satisfying Eq. (2.11) can be determined analytically when the pk 
are given by Dividing Eq. (2.11) by L we may write it as 

 

 0)ln( =
∂

∂
L

β
            (2.13) 

 

Substituting Eq. (2.10) into Eq. (2.13) we deduce that 

 

 0)ln(
1

=
∂

∂
∑

=

n

k

kk pr
β

           (2.14) 

 

Using Eq. (2.7a) we have 

 

 )1ln()ln()ln( −+−= βααβkpk ; k = 1, 2 … n -1             (2.15a) 
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 )ln()1()ln( αβ −−= npn                          (2.15b) 

 

so that 0)1/()ln()()ln(
1

=−−+








−− ∑
=

ββ αααα nn

n

k

k rNrkr     (2.16) 

 

Eq. (2.16), and hence Eq. (2.11) is satisfied for 

 

 

n

n

k

k

n

rkr

rN

−

−
=−

∑
=

−

1

1 βα            (2.17) 

This can be written as 

 

 

n

n

k

k

n

k

k

rkr

rk

−

−

=

∑

∑

=

=−

1

1

)1(
βα            (2.18) 

 

Hence the value of β satisfying Eq. (2.18), which we henceforth denote by βMLE, is given by 

 

 
)ln(

)1(lnln
11

α
β 








−−








−

=

∑∑
==

n

k

kn

n

k

k

MLE

rkrkr

       (2.19) 

Note that βMLE is infinite in the special case that r1 = N and r2 = r3 = … rN = 0. Hence we 

exclude this case when evaluating the statistics of βMLE. Let ∑
N

rr

n

n

rrrf
},...{

21

1

);...,( ε   denote the sum 

of a function f(r1, r2 … rn; ε)  over all non-negative integers r1, r2 … rn such that ∑
=

=
n

k

k Nr
1

and let 

/

},...{ 1

∑
N

rr n

denote the same sum, but with the restriction that r2, r3 … rn are not all zero. We consider 

the restricted average of βMLE given by 

 

 )1/()!/(! 1

},...{},...{ 1

//

11

N
N

rr

MLE

N

rr

n

k

k

r

kMLEMLE prpN
nn

k −=>=< ∑∑ ∏
=

ββµ     (2.20) 

Similarly, the variance of βMLE is given by 

 

 
2//2

><−>=< MLEMLEMLE ββσ          (2.21) 
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where )1/()!/(! 1

},...{

2

},...{ 1

//2

11

N
N

rr

MLE

N

rr

n

k

k

r

kMLE prpN
nn

k −=>< ∑∑ ∏
=

ββ      (2.22) 

 

In this report we estimate µMLE and σMLE by performing Monte-Carlo simulations of catalogues 

with a specified β. If u is a random number uniformly distributed between 0 and 1, representing 
F(x), then Eq. (2.6) may be used to obtain x:: 

 

 β/1
)1(

−−= ux             (2.23) 

 

The value of 1 + INT{ln(x)/ln(α)}, where INT denotes integer part, then determines the 
number of the bin in which x is located.  

 

As we shall see in the next chapter 1000 realizations of a catalogue is sufficient for confidence 

testing and error estimation. An alternative method of obtaining µMLE and σMLE, based on 
transforming the summations on the right-hand sides of Eqs. (2.20) and (2.21) into integrations 
over one or two variables, is given in the appendix. These integrals may subsequently be 
evaluated numerically or used to obtain large-N asymptotics. 
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3. Results 

 

3.1 Maximum-Likelihood Estimate for the b-Value of the Entire Groningen 

Catalogue and its Error Bounds 

 

The Groningen catalogue since 1st May 1995 and up to the end of 2014 comprises 236 events of 
moment magnitude 1.5 or greater. The maximum observed magnitude was 3.6, observed for a 
single event. The seismic moments for the catalogue are therefore divided up into 22 bins, 
corresponding to moment magnitudes of 1.45-1.55, 1.55-1.65 and so forth, up to 3.45-3.55 and 
finally 3.55-∞. The number of events corresponding to each bin is tabulated in Table 3.1.  

 

Table 3.1. Distribution of Events in Seismic Moment Bins for the 236-Event Groningen 
Catalogue (1st May 1995-31st December 2014, Rounded Moment Magnitude ≥ 
1.5. 

Bin Number 1 2 3 4 5 6 7 8 

Moment Magnitude 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 

Number of Events 54 38 26 23 18 15 7 8 

Bin Number 9 10 11 12 13 14 15 16 

Moment Magnitude 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 

Number of Events 8 8 8 5 4 3 1 5 

Bin Number 17 18 19 20 21 22   

Moment Magnitude 3.1 3.2 3.3 3.4 3.5 3.6+   

Number of Events 0 3 0 0 1 1   

 

The maximum likelihood estimate of the β-value for this catalogue, according to Eq. (2.19) is 

 

 644.0=MLEβ             (3.1) 

 

This corresponds to a maximum likelihood estimate of b-value given by 

 

 966.0644.05.1 =×=MLEb           (3.2) 

 

This is so close to the accepted value b = 1 for induced seismicity that we use the value b = 1, 

corresponding to β = 2/3, to generate 1000 synthetic Monte-Carlo realizations of the 236-event 
Groningen catalogue, in order to obtain an error estimate for Eqs. (3.1) and (3.2). Figure 3.1 

shows the resulting distribution of βMLE, which also indicates the simulation mean (0.664) and the 

actual catalogue value of βMLE given in Eq. (3.1). The actual catalogue value is sufficiently close to 

the simulation mean for the hypothesis that β = 2/3 to be accepted, which means that we can 
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use the standard deviation of the simulations to provide an error bar on Eq. (3.1). This error bar 
is ± 0.043. Hence we may write 

 

 043.0644.0 ±=MLEβ            (3.3) 

 

The corresponding result for bMLE is 

 

 065.0966.0 ±=MLEb            (3.4) 

 

Figure 3.1. Distribution Function of βMLE obtained from 1000 Realizations of a 236-Event Catalogue with  

β = 2/3. The vertical solid line shows the value of the simulation mean while the dashed line is 

the actual Groningen Catalogue βMLE. 

 

The simulation is of value in providing further information about the statistics of the event 

catalogues. For example, a lower β value results in a greater probability of higher magnitude 
events, so we can ask the question about how well the event, or events, of maximum magnitude 

in a simulated catalogue correlate with the βMLE for that catalogue. The results are shown in 

Figure 3.2. The highest magnitude event, a 6.9, occurs for a βMLE of 0.629, only a little lower than 
the simulation mean, while of the three catalogues for which the highest magnitude event is only 

magnitude 3, two of them have high values of βMLE, 0.747 and 0.750, while the remaining one has 

a βMLE of only 0.612. The complementary distribution function for the maximum magnitude 
event, or events, in a catalogue, is shown in Figure 3.3. We take note of the fact that 79% of the 
simulated catalogues contain an event of maximum magnitude greater than 3.6, the observed 
value for the actual catalogue. The shape of the curve in Figure 3.3 may be readily understood by 
considering the probability PN(x) that at least one event out of N has a moment magnitude 
greater than x. This is given by 
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 N

CN xFxP )}(1{1)( −−=           (3.5) 

 

where FC(x) is given by Eq. (2.6). The probability that at least one event has moment magnitude 
greater than m, PN(m), is then given by 

  

 )()( xPmP NN =              (3.6) 

 

where )45.1( −= m
10x             (3.7) 

 

Substituting Eq. (3.6) into Eq. (3.5), and applying Eqs. (3.7) and (2.6), we obtain 

 

 Nm

N mP }101{1)( )45.1( −−−−= β           (3.8) 

 

Eq. (3.8) is also included in Figure 3.3 and is in close agreement. 

 

 

Figure 3.2. Maximum magnitude event(s) in simulated catalogue versus βMLE. 
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Figure 3.3.  Complementary Distribution Function of Maximum Magnitude Events from 1000 
Realizations of a 236-Event Groningen Catalogue. The Red Curve is the Analytical 
Expression in Eq. (3.8) 

 
3.2 Maximum Likelihood and Error Estimates for the b-Value of Temporal 

Subsets of the Groningen Catalogue 

 

In this section the Groningen catalogue is divided into four sub-catalogues, each containing 59 
events, according to temporal order.  
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Table 3.2. Distribution of Events in Seismic Moment Bins for the 236-Event Groningen 
Catalogue, Split Up by Temporal Sub-catalogue 

Bin Number 1 2 3 4 5 6 7 8 

Moment Magnitude 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 

# Events 1st Subcatalogue 11 16 6 6 3 3 2 2 

# Events 2nd Subcatalogue 13 6 7 5 5 3 2 5 

# Events 3rd Subcatalogue 16 10 8 7 5 3 0 1 

# Events 4th Subcatalogue 14 6 5 5 5 6 3 0 

Bin Number 9 10 11 12 13 14 15 16 

Moment Magnitude 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 

# Events 1st Subcatalogue 1 2 2 1 2 0 0 2 

# Events 2nd Subcatalogue 4 1 2 3 0 0 0 1 

# Events 3rd Subcatalogue 2 2 4 0 0 0 0 0 

# Events 4th Subcatalogue 1 3 0 1 2 3 1 2 

Bin Number 17 18 19 20 21 22   

Moment Magnitude 3.1 3.2 3.3 3.4 3.5 3.6+   

# Events 1st Subcatalogue 0 0 0 0 0 0   

# Events 2nd Subcatalogue 0 1 0 0 1 0   

# Events 3rd Subcatalogue 0 1 0 0 0 0   

# Events 4th Subcatalogue 0 1 0 0 0 1   

 

The maximum likelihood estimates of the β-value for each sub-catalogue, according to Eq. (2.18) 
are (with corresponding b-value maximum likelihood in brackets): 

 

1st sub-catalogue  )043.1(695.0 == MLEMLE bβ        (3.5a) 

 

2nd sub-catalogue  )865.0(577.0 == MLEMLE bβ        (3.5b) 

 

3rd sub-catalogue  )213.1(809.0 == MLEMLE bβ        (3.5c) 

 

4th sub-catalogue  )782.0(528.0 == MLEMLE bβ       (3.5d) 

 

A simulation of 1000 realizations of a 59-event catalogue with β = 2/3 yields the result  

 

 086.0665.0 ±=MLEβ            (3.6) 
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Inspection of Eqs. (3.5) reveals that all the sub-catalogues with the exception of the first lie 
outside the error bars in Eq. (3.6). This is represented graphically in Figure 3.4, where the values 

of βMLE given in Eqs. (3.5) are compared with the distribution of βMLE obtained from the 
simulation.  

 

Figure 3.4.  Distribution Function of Maximum Likelihood Estimator Obtained from 1000 Realizations 

of a 59-Event Catalogue with β = 2/3. The Simulation Mean, Together with the Four 

Values of βMLE Given in Eqs. 93.45), are Displayed as Vertical Lines on the Plot. 

We see from Figure 3.4 that the hypothesis that the β value for the fourth sub-catalogue is less 
than 2/3 has a confidence level greater than 95%, and that we can be almost as confident that the 

β value for the third sub-catalogue is greater than 2/3. Note that the probability that at least two 

of the sub-catalogues have βMLE values in the bottom or top 5% of the distribution is 1 – 0.94 – 4 
× 0.1 × 0.93 = 0.0523. We now determine whether there is any correlation with rate effect by 
examining the time intervals corresponding to the four sub-catalogues. The dates and times of 
the first and last events in each sub-catalogue are listed in Table 3.3. The maximum likelihood 
estimate for each sub-catalogue is plotted against the catalogue duration in Figure 3.5. It is hard 
to draw any conclusions regarding rate dependency from Figure 3.4, and we further subdivide the 
catalogue into 1a, 1b, 2a, 2b etc. where the a-half of each of the four sub-catalogues consists of 29 
events and the b-half 30 events. The number of events by magnitude for each of these sub-
catalogues is listed in Table 3.4. 

 

Table 3.3 Dates and Times of First and Last Events for Each of the Four 59-Event Temporal Sub-
Catalogues of the 236 Event Groningen Catalogue 

 Date Time Date Time Elapsed Hrs. 

1st Sub-Catalogue 15/05/1995 08:24:00 25/02/2005 20:38:24 3586.24 

2nd Sub-Catalogue 10/03/2005 18:43:12 08/05/2009 22:48:00 1524.08 

3rd Sub-Catalogue 05/07/2009 08:52:48 19/02/2012 02:52:48 953.00 

4th Sub-Catalogue 31/03/2012 09:21:36 30/12/2014 Not Recorded 1006.64* 

*Time of last event for fourth sub-catalogue is assumed to be 12:00 pm     
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Figure 3.5.  Maximum Likelihood Estimators of b-Value for Four 59-Event Sub-Catalogues of the 
Groningen Catalogue versus Sub-Catalogue Duration. 

 

 

The maximum likelihood estimate has been computed, according to Eq. (2.19), for each of the 
sub-catalogues in Table 3.4, and these have been plotted against the duration of the cub-
catalogue in Figure 3.6.  For these sub-catalogues containing almost equal number of events (29 
or 30), it is now clear that there is little correlation between the maximum likelihood estimate of 

the parameter β and the duration of the sub-catalogue. The error bars (corresponding to ± one 
standard deviation) shown in Figure 3.6 are obtained from simulations of 1000 realizations of 

each sub-catalogue with the β for the underlying process set equal to βMLE.  
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Table 3.4. Distribution of Events in Seismic Moment Bins for the 236-Event Groningen 
Catalogue (1st May 1995-31st December 2014, Rounded Moment Magnitude ≥ 
1.5), Split Up into Eight 29 or 30 Event Temporal Sub-catalogues 

Bin Number 1 2 3 4 5 6 7 8 

Moment Magnitude 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 

# Events 1a Subcatalogue 4 9 2 5 1 3 1 0 

# Events 1b Subcatalogue 7 7 4 1 2 0 1 2 

# Events 2a Subcatalogue 7 5 2 3 3 1 0 2 

# Events 2b Subcatalogue 6 1 5 2 2 2 2 3 

# Events 3a Subcatalogue 9 5 4 3 0 2 0 0 

# Events 3b Subcatalogue 7 5 4 4 5 1 0 1 

# Events 4a Subcatalogue 7 1 3 4 2 4 0 0 

# Events 4b Subcatalogue 7 5 2 1 3 2 3 0 

Bin Number 9 10 11 12 13 14 15 16 

Moment Magnitude 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 

# Events 1a Subcatalogue 0 1 2 1 0 0 0 0 

# Events 1b Subcatalogue 1 1 0 0 2 0 0 2 

# Events 2a Subcatalogue 3 1 1 0 0 0 0 0 

# Events 2b Subcatalogue 1 0 1 3 0 0 0 1 

# Events 3a Subcatalogue 2 2 2 0 0 0 0 0 

# Events 3b Subcatalogue 0 0 2 0 0 0 0 0 

# Events 4a Subcatalogue 0 3 0 0 2 0 0 1 

# Events 4b Subcatalogue 1 0 0 1 0 3 1 1 

Bin Number 17 18 19 20 21 22   

Moment Magnitude 3.1 3.2 3.3 3.4 3.5 3.6+   

# Events 1a Subcatalogue 0 0 0 0 0 0   

# Events 1b Subcatalogue 0 0 0 0 0 0   

# Events 2a Subcatalogue 0 0 0 0 1 0   

# Events 2b Subcatalogue 0 1 0 0 0 0   

# Events 3a Subcatalogue 0 0 0 0 0 0   

# Events 3b Subcatalogue 0 1 0 0 0 0   

# Events 4a Subcatalogue 0 1 0 0 0 1   

# Events 4b Subcatalogue 0 0 0 0 0 0   
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Figure 3.6.  Maximum Likelihood Estimators of b-Value for Eight 29 or 30-Event Sub-Catalogues of the 
Groningen Catalogue versus Sub-Catalogue Duration. 

Further ways of temporally subdividing the Groningen catalogue into equal or nearly equal  

subcatalogues are listed in Table 3.5, and the resulting maximum likelihood estimators of β are  
shown in Figure 3.7. These results are compared with the hypothesis that the underlying value of  

β for each sub-catalogue is in fact equal to 2/3 (corresponding to b = 1) in Figure 3.8. The 
horizontal lines represent the limits of 95% confidence intervals for this hypothesis, obtained 
from simulations containing 5000 realizations.  

    

Table 3.5. Subdivision of the 256-Event Groningen Catalogue into up to Eight Sub-Catalogues 

Number of Sub-Catalogues Subdivision 

1 1 × 236 

2 2 × 118 

3 79, 78, 79 

4 4 × 59 

5 4 × 47, 48 

6 40, 4 × 39, 40 

7 33, 5 × 34, 33 

8 29, 30, 29, 30, 29, 30, 29, 30 

    
We see that the computed values of βMLE are consistent with the hypothesis that β = 2/3 at the  
95% level for all but four of the sub-catalogues, and these four are on the lower bound of the 
confidence interval rather than being significantly below it. 
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Figure 3.7.  Maximum Likelihood Estimators of β for Sub-Catalogues of the 256-Event Groningen Catalogue 
Selected as Shown in Table 3.5.  

    

 

Figure 3.8.  As Figure 3.7 but also showing the 95% Confidence Intervals for the Hypothesis that β = 2/3 for 
Each Sub-Catalogue. Note that the Smaller the Sub-Catalogue the Wider the Confidence Interval. 
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3.3 Maximum Likelihood and Error Estimates for the b-Value of Events in the 
Loppersum and Ten Boer Areas 

We now focus on two specific spatial sub-regions of the Groningen field centered around 
Loppersum (containing the region of historically the most intense seismicity, and also the event 
of maximum moment magnitude) and Ten Boer, the most active region outside Loppersum, and 
also closer to the city of Groningen. These regions have centres (244, 598) and (250, 591) 
respectively, in terms of Easting and Northing coordinates expressed in kilometers. The radius of 
each region is 5 kilometers. These regions correspond to the ones chosen in [5], and the estimates 
of b-value obtained here can be compared with those obtained in [5]. The number of events of 
magnitude 1.5 or greater in each region during the period 1st May 1995 to 31st December 2014 is 
82 for Loppersum and 60 for Ten Boer. The events are tabulated by moment magnitude in Table 
3.4. The spatial location of these events, as well as an indication of magnitude, is shown in Figure 
3.5. 
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Table 3.6. Distribution of Events in Seismic Moment Bins for the Loppersum and Ten Boer 
regional sub-catalogues (1st May 1995-31st December 2014, Rounded Moment 
Magnitude ≥ 1.5). 

Bin Number 1 2 3 4 5 6 7 8 

Moment Magnitude 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 

Loppersum Region 14 8 7 6 7 8 2 6 

Ten Boer Region 15 10 11 4 4 4 0 1 

Bin Number 9 10 11 12 13 14 15 16 

Moment Magnitude 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 

Loppersum Region 4 2 3 2 4 1 1 3 

Ten Boer Region 1 4 2 1 0 0 0 2 

Bin Number 17 18 19 20 21 22   

Moment Magnitude 3.1 3.2 3.3 3.4 3.5 3.6+   

Loppersum Region 0 2 0 0 1 1   

Ten Boer Region 0 1 0 0 0 0   

 

Note that the events are color-coded according to whether they occur in the first half (by time of 
event) or second half of the sub-catalogue. These two halves are considered separately in the next 
section.  

 

Applying Eq. (2.18) to the data in Table 3.5, we obtain the following values of βMLE for the 

Loppersum and Ten Boer sub-catalogues (the corresponding values of bMLE are given in 
brackets): 

 

Loppersum βMLE = 0.471 (bMLE = 0.707)        (3.7) 

 

Ten Boer  βMLE = 0.709 (bMLE = 1.064)        (3.8) 

 

1000 realizations of the 82-event Loppersum sub-catalogue and the 60-event Ten Boer 

sub-catalogue with input value β = 2/3 yielded βMLE = 0.668 ± 0.074 for Loppersum and 0.669 ±  

0.085 for Ten Boer. The actual value of βMLE is far outside the error bars of the simulation for 

Loppersum and well within it for Ten Boer. Further illustration of this is provided by Figure 3.6  

which shows the  distribution of βMLE for the two simulations together with the actual values in  

Eqs. (3.7) and (3.8).  The shapes of the distributions are compared with Gaussian distributions 

with the same mean and variance for comparison. Figure 3.6 (a), in particular, tells us that we can 

be 99.9% confident that the underlying process producing induced seismicity in the Loppersum 

region has a β value smaller than 2/3.   Note that the estimate of β obtained by the present 

method for the Loppersum sub-region is smaller than that obtained in [5] using a straight line fit 
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of log frequency versus seismic moment. The value obtained there was β = 0.57, corresponding 

to b = 0.85. This method for estimating b-value has been used in the past, but as pointed out in 

[6], is not justified on statistical grounds. 

 

 

 

Figure 3.9.  Spatial distribution of events in (a) the Loppersum and (b) Ten Boer regions. Magnitude classes 
are also indicated . The terms 1st Half and 2nd Half refer to the first and second halves of the 
catalogues, arranged temporally 
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Figure 3.10. Distribution of maximum likelihood estimate βMLE for 1000 realizations of 

simulated (a) Loppersum and (b) Ten Boer sub-catalogues with β = 2/3. The 
shapes of the distributions are compared with Gaussian distributions having the 

same mean and variance and the values of βMLE obtained for the actual sub-
catalogues are also shown. 
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3.4 Maximum Likelihood and Error Estimates for the b-Value of Temporal 
Subsets of Events in the Loppersum and Ten Boer Areas 

 

Because the number of events in the Loppersum and Ten Boer sub-regions is relatively small, 
just two temporal subsets, corresponding to the first and second halves of the sub-catalogue 
corresponding to each sub-region, are used. The distribution of the events into the magnitude 
bins for each temporal subset is shown in Table 3.6.  

 

Table 3.7. Distribution of Events in Seismic Moment Bins for the first and second halves of 
the Loppersum and Ten Boer subcatalogues (1st May 1995-31st December 2014, 
Rounded Moment Magnitude ≥ 1.5). 

Bin Number 1 2 3 4 5 6 7 8 

Moment Magnitude 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 

Loppersum Region (1st Half) 7 7 1 2 3 5 1 2 

Loppersum Region (2nd Half) 7 1 6 4 4 3 1 4 

Ten Boer Region (1st Half) 7 7 6 1 2 1 0 1 

Ten Boer Region (2nd Half) 8 3 5 3 2 3 0 0 

Bin Number 9 10 11 12 13 14 15 16 

Moment Magnitude 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 

Loppersum Region (1st Half) 4 2 2 1 2 0 0 1 

Loppersum Region (2nd Half) 0 0 1 1 2 1 1 2 

Ten Boer Region (1st Half) 0 2 1 1 0 0 0 1 

Ten Boer Region (2nd Half) 1 2 1 0 0 0 0 1 

Bin Number 17 18 19 20 21 22   

Moment Magnitude 3.1 3.2 3.3 3.4 3.5 3.6+   

Loppersum Region (1st Half) 0 0 0 0 1 0   

Loppersum Region (2nd Half) 0 2 0 0 0 1   

Ten Boer Region (1st Half) 0 1 0 0 0 0   

Ten Boer Region (2nd Half) 0 0 0 0 0 0   

 

The values of βMLE for each temporal sub-catalogue, computed using Eq. (2.19), are listed in Eqs. 
(3.9a)-(3.9d), with the corresponding values of bMLE in brackets. 

 

Loppersum, 1st half  )751.0(500.0 == MLEMLE bβ       (3.9a) 

 

Loppersum, 2nd half  )652.0(435.0 == MLEMLE bβ       (3.9b) 
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Ten Boer, 1st half  )146.1(764.0 == MLEMLE bβ        (3.9c) 

 

Ten Boer, 2nd half  )992.0(661.0 == MLEMLE bβ        (3.9d) 

 

In order to test whether there is a significant temporal shift in the values of βMLE for the 
Loppersum and Ten Boer sub-regions, simulations of 41 and 30 event catalogues were 
performed, these being the number of events in the Loppersum and Ten Boer temporal sub-

catalogues, respectively. The values of β used as input were the maximum likelihood estimates of 
the entire catalogue for each subregion, namely the values given in Eqs. (3.7) and (3.8) 
respectively. The results are shown in Figure 3.7. 

 

 

Figure 3.9. Distribution of maximum likelihood estimate βMLE for 1000 realizations of simulated (a) 

Loppersum and (b) Ten Boer sub-catalogues with β = 2/3. The shapes of the distributions are 
compared with Gaussian distributions having the same mean and variance and the values of 

βMLE obtained for the actual sub-catalogues are also shown.  
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We can conclude from Figure 3.6 that the differences in the βMLE observed between the first and 
second halves of the catalogues for Loppersum and Ten Boer are not significant enough to 
indicate a change in the underlying process. 
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4. Conclusions and Recommendations 

 

This report contains a prescription for obtaining a maximum likelihood estimate for the b-value 
in the Gutenberg-Richter relationship for the frequency versus moment magnitude for seismic 
events. This relationship has been applied for both naturally occurring and induced seismicity. A 
procedure for obtaining the error estimate in the resulting values of b is also outlined.  

 

The prescription and procedure is then applied to the catalogue of seismic events triggered by gas 
production in the Groningen field. Events occurring between 1st May 1995 and 31st December 
2014, and of magnitude 1.5 and greater are used to estimate values of b for the entire catalogue 
and various subsets of it. The value of b obtained for the entire catalogue is consistent with the 
commonly accepted value of unity for induced seismicity.  

 

A key question for hazard assessment is whether the character of the seismicity is changing with 
time, or is dependent on the number of events per unit time. This is because the frequency of 
rare events of high magnitude, potentially capable of causing structural damage, is dependent on 
the b-value. Accordingly, the Groningen catalogue is then applied to temporal subsets to examine 
any evidence for a varying b-value. While a subdivision of the catalogue into four subsets of equal 
numbers of events suggests more variability in the maximum likelihood estimator for the subsets 
than would be expected if the b-value of the underlying process were constant, a closer 
examination, involving further subdivisions of the catalogue, does not show any systematic 
dependence of b value on event rate. 

 

A recent report examined induced seismicity in various spatial sub-regions of the Groningen field 
and beyond it and related the data to a stochastic model of fault-slippage induced seismicity. Two 
of these sub-regions, around Loppersum, where the event of largest magnitude to date has 
occurred, and around Ten Boer, which is closer to the city of Groningen, were selected for 
analysis by the methods introduced in this report. All events of magnitude greater or equal to 1.5 
and occurring between 1st May 1995 and 31st December 2014 were considered. The results 
showed that the b-value around Loppersum is less than unity to a high degree of significance, 
while the Ten Boer data is consistent with a b-value of unity. No statistically significant temporal 
evolution of b-value for these spatial sub-regions was found. Note that no attempt to obtain a 
spatial correlation dimension for events, such as was done for seismicity in the Lacq gas field [7], 
was made here. 

 

Though it resembles the one introduced in [7], the method presented here for determining b-
value is different from any proposed in the literature and it should be applied to literature 
datasets in order to compare with these other methods. Furthermore, the b-value estimator is 
largely dependent on a single parameter, the summation of the number of events occurring in a 
magnitude moment bin times the bin number. Examination of the magnitude of the likelihood 
function itself should be performed in order to identify data anomalies or inconsistencies. 
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5. Nomenclature 

Roman Characters 

Symbol Definition Unit Introduced 

b b-value in Gutenberg-Richter law - Page II 

bMLE Maximum likelihood estimator of b - Page II 

d Constant relating moment and moment magnitude - Eq. (1.1) 

F(M) Distribution function for seismic moment - Eq. (1.6) 

FC Complementary distribution function - Eq. (2.6) 

f(r1..rn) Arbitrary function of bin event numbers - Eq. (2.20) 

L(p1..pn) Likelihood function - Eq. (2.10) 

M Seismic moment N-m Eq. (1.1) 

M0 Threshold seismic moment N-m Eq. (2.1) 

Mc Reference seismic moment N-m Eq. (1.1) 

m Moment magnitude - II 

m0 Threshold moment magnitude - II 

N Number of events in a catalogue - Eq. (2.8) 

n Largest bin number containing an event - Eq. (2.5) 

P(m) Probability that an event has moment magnitude - II 

PN(m) Probability that the largest event in an N-event catalogue has 

moment magnitude > m 

- Eq. (3.6) 

P(r1..rn) Probability that rk events fall into the kth bin for all bins 1 to n - Eq. (2.8) 

pk Probability that an event falls in the kth bin - Eq. (2.5) 

rk Number of events in the kth bin - Eq. (2.8) 

S0 Component of maximum likelihood estimator - Eq. (A.2) 

S1 Component of maximum likelihood estimator - Eq. (A.2) 

S1(ε) Generalization of S1 - Eq. (A.9) 

u Uniformly distributed random variable over [0, 1] - Eq. (2.23) 

x Normalized seismic moment (M/M0) - Eq. (2.3) 
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Greek Characters 

Symbol Definition Unit Introduced 

α Ratio of moments for a moment magnitude increment of 0.1 - Eq. (2.4) 

β Exponent in Pareto distribution of nromalized moment - Eq. (1.7) 

βMLE Maximum likelihood estimator of β - Eq. (2.19) 

ε Small quantity set to zero at end of calculation - Eq. (A.9) 

µMLE Mean of distribution of βMLE - Eq. (2.20) 

σMLE Variance of distribution of βMLE - Eq. (2.21) 
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Appendix 1 – Conversion of the Summations in Eqs. (2.20) & (2.22) into 
Integrations 

 

In this appendix a methodology for converting the summations on the right-hand sides of Eqs. 
(2.20) and (2.22) into integrations over a single variable is outlined. Considering Eq. (2.19) first of 
all, we write 
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The conversion is accomplished by using the following integral representation of the logarithm: 

 

 { }∫
∞

− −−−=
0

1
)exp()exp()ln( zuuduuz         (A.3) 

Hence uurkruduS
n

k

nk /exp)exp(
0 1

0 ∫ ∑
∞

= 



























−−−−=       (A.4) 

The unrestricted summation over S0 may now be evaluated explicitly on reversing the order of 
summation and integration to yield 
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The restricted sum may readily be related to the unrestricted one by subtracting the term ln(N)p1
N 

and dividing by 1 – p1
N. The result is 
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Integrating Eq. (A.5) by parts, we obtain 
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So that we finally have 
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We proceed in a slightly different way for S1 due to the fact that <S1> is infinite. We introduce 
the quantity 
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where ε is a positive quantity that we set to zero at the end of the calculation. We now have 
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Using Eq. (A.3), we have 
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Interchanging the order of integration and summation in the unrestricted sum, and evaluating the 
sum yields 
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we may write 
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Integration by parts yields the result 
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As ε → 0 the first term on the right-hand side of Eq. (A.15) tends to a constant and the second 

term tends to zero as ε. Hence, 
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For numerical integration purposes, or to develop asymptotic expansions for large N, it is useful 
to transform to the new variables v1 and v2 in Eqs. (94) and (95) respectively as follows: 
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Raising Eqs. (A.17) and (A.18) to the power N and differentiating, we obtain 
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On substituting Eqs. (98) and (99) back into Eqs. (94) and (95), we get 
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Developing expansions for u in powers of v1 in Eq. (A.21) and v2 in Eq. (A.22) then leads to large 
N asymptotic expansions for <S0>

/ and <S1>
/.  

 

We shall not deal in detail here with the representation of <βMLE
2>/ as an integral, only 

mentioning that we make use of the fact that (cf Eq. A.3) 
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