
Source Code Review

CoronaMelder, Android and iOS application

commissioned by

Ministerie van Volksgezondheid, Welzijn en

Sport

MinVWS-Coronamelder-REPORT-vŴ.ų.pdf

Ben Brücker, BSc. OSCP, GXPN, SEPP

Ralph Moonen, CISSP

Tim Hemel, MSc.

Tom Tervoort, MSc.

Matthijs Koot, Ph.D.

Yurii Bilyk, CEH

Dave Wurtz, OSCP, OSCE

Version Ŵ.ų

Ŵż August ŵųŵų CONFIDENTIAL

Secura BV

Vestdijk Ÿż

ŸŹŴŴ CA EINDHOVEN

The Netherlands

Karspeldreef Ż

ŴŴųŴ CJ AMSTERDAM

The Netherlands

T +ŶŴ (ų)ŷų ŵŶ źź żżų

E info@secura.com

W https://www.secura.com

mailto:info@secura.com

CONFIDENTIAL

DOCUMENT MANAGEMENT

Reviewers

Name Function Date Version

Matthijs Koot Security Specialist ŵųŵų-ųŻ-Ŵż ų.Ŵ

Ralph Moonen Technical Director ŵųŵų-ųŻ-Ŵż Ŵ.ų

Changes

Version Date Initials Changes

ų.Ŵ ŵųŵų-ųŻ-Ŵż BB Initial version

Ŵ.ų ŵųŵų-ųŻ-Ŵż BB Internally reviewed final version

© Secura BV, ŵųŵų iii

CONFIDENTIAL

CONTENTS

Ŵ Management Summary Ŵ

Ŵ.Ŵ Results of the review . Ŵ

Ŵ.ŵ Recommendations . Ŵ

Ŵ.Ŷ Conclusion . ŵ

Ŵ.ŷ Limitations of the assessment . ŵ

Ŵ.Ÿ Final Notes . ŵ

ŵ Technical Summary Ŷ

ŵ.Ŵ Research questions . Ŷ

ŵ.Ŵ.Ŵ Requirements with inconsistencies . Ŷ

ŵ.Ŵ.ŵ Mapping of requirements . ŷ

ŵ.ŵ Most Important Findings . Ÿ

ŵ.Ŷ Overview of Findings . ź

Ŷ Description of the Engagement ż

Ŷ.Ŵ Scope of the Assessment . ż

Ŷ.ŵ Information Provided . ż

Ŷ.Ŷ Goal of the Assessment . ż

Ŷ.ŷ Reporting . Ŵų

Ŷ.Ÿ Approach . Ŵų

Ŷ.Ź Limitations . Ŵų

ŷ Application Assessment ŴŴ

ŷ.Ŵ Application version . ŴŴ

ŷ.ŵ Research questions . ŴŴ

ŷ.Ŷ UŴŶ - Data collection . Ŵŵ

ŷ.Ŷ.Ŵ iOS . Ŵŵ

ŷ.Ŷ.ŵ Android . Ŵŷ

ŷ.ŷ FŶ - Anonymous contact codes . ŴŹ

ŷ.Ÿ Fŷ - Secure uninstallation . ŴŹ

ŷ.Ÿ.Ŵ iOS . ŴŹ

ŷ.Ÿ.ŵ Android . ŴŹ

ŷ.Ź FŸ - Temporary disabling the application . ŴŻ

ŷ.Ź.Ŵ Submission of Decoys while application is disabled . ŵŵ

ŷ.ź FŹ - Collection of anonymous contact codes . ŵŶ

ŷ.Ż Fź - Central configuration . ŵŶ

ŷ.Ż.Ŵ iOS . ŵŶ

ŷ.Ż.ŵ Android . ŵŷ

ŷ.ż FŻ - Removal of old data . ŵŷ

ŷ.ż.Ŵ iOS . ŵŷ

ŷ.ż.ŵ Removal of exposure TEKs . ŵŹ

ŷ.ż.Ŷ Android . ŵŹ

ŷ.ż.ŷ Conclusion . ŵż

ŷ.Ŵų Fż - Collection of contact codes . Ŷų

ŷ.Ŵų.Ŵ iOS . Ŷų

ŷ.Ŵų.ŵ Android . Ŷų

ŷ.ŴŴ FŴų - Central configuration . Ŷų

ŷ.ŴŴ.Ŵ iOS . Ŷų

© Secura BV, ŵųŵų iv

CONFIDENTIAL

ŷ.ŴŴ.ŵ Android . ŶŴ

ŷ.Ŵŵ FŴŴ - Automatic exposure detection based on configuration . ŶŴ

ŷ.Ŵŵ.Ŵ iOS . ŶŴ

ŷ.Ŵŵ.ŵ Android . Ŷŵ

ŷ.ŴŶ QŴŶ - Warnings on communication errors . Ŷŵ

ŷ.ŴŶ.Ŵ iOS . Ŷŵ

ŷ.ŴŶ.ŵ Android . ŶŶ

ŷ.Ŵŷ QŴŷ - Warning on loss of required technology . ŶŸ

ŷ.Ŵŷ.Ŵ iOS . ŶŸ

ŷ.Ŵŷ.ŵ Android . ŶŹ

ŷ.ŴŸ Qŵŵ - De-anonymization . ŶŹ

ŷ.ŴŸ.Ŵ Anonymity: unlinkability of TEKs to individuals . ŶŹ

ŷ.ŴŸ.ŵ Decoy uploads . Ŷż

ŷ.ŴŹ QŵŶ - No location Data . Ŷż

ŷ.ŴŹ.Ŵ iOS . ŷų

ŷ.ŴŹ.ŵ Android . ŷų

ŷ.Ŵź QŵŹ - Anonymous contact codes . ŷŵ

ŷ.ŴŻ QŵŻ - Use only after explicit consent . ŷŵ

ŷ.ŴŻ.Ŵ iOS . ŷŵ

ŷ.ŴŻ.ŵ Android . ŷŶ

ŷ.Ŵż Generation, storage and transport of logging data. ŷŶ

ŷ.ŵų Protection of data in local storage . ŷŷ

ŷ.ŵŴ External libraries . ŷŷ

ŷ.ŵŴ.Ŵ iOS . ŷŷ

ŷ.ŵŴ.ŵ Android . ŷŸ

ŷ.ŵŵ Protection of data in transit . ŷŹ

ŷ.ŵŵ.Ŵ Android . ŷŻ

ŷ.ŵŶ TEK signing . ŷż

ŷ.ŵŷ Correct use of the Google and Apple API’s (GAEN) . Ÿŵ

ŷ.ŵŸ Limited permissions . Ÿŵ

ŷ.ŵŹ Root / Jailbreak detection . ŸŶ

A Testing Approach and Background ŸŸ

A.Ŵ Technical Security Assessment Types . ŸŸ

A.ŵ System Changes . ŸŸ

A.Ŷ Assessment Criteria . ŸŸ

A.ŷ Classification of Findings . ŸŸ

A.ŷ.Ŵ Likelihood . ŸŸ

A.ŷ.ŵ Impact . ŸŹ

A.ŷ.Ŷ Risk . ŸŹ

A.Ÿ Remarks . ŸŹ

A.Ź Dossier . Ÿź

B Used Acronyms ŸŻ

© Secura BV, ŵųŵų v

CONFIDENTIAL

Ŵ. MANAGEMENT SUMMARY

This document describes the results of the source code review of the CoronaMelder application that Secura performed at the

request of the Ministerie van Volksgezondheid, Welzijn en Sport (hereafter MinVWS). This engagement was performed in July

and August ŵųŵų in accordance with relevant sections of testing standards such as OWASP Mobile Testing Guide, Mobile

Application Security Verification Standard (M-ASVS) and relevant publications from MinVWS, in addition to Secura’s own

professional insight and expertise.

Prior to performing the source code review, a list of research questions was derived from the technical, security and privacy

requirements as published by MinVWS. These questions are answered in chapter ŵ on page Ŷ. The scope of the review was

defined as the Android and iOS source code as published on the repository of MinVWS, at the time of reviewing. Backend

servers and systems were not a part of this review. Also not a part of the scope were the Google and Apple Exposure

Notification (GAEN) functionalities of the mobile phone’s operating systems. See below under ’Limitations’.

ų.ų. Results of the review
As a result of the source code review Secura has ascertained that the iOS and Android versions of the application adhere to

security and privacy requirements. However, Secura found a number of minor inconsistencies while assessing the application’s

source code.

First, the iOS application makes use of a software library that implements transport security and other cryptographic functions,

in a version (vŴ.Ŵ.ŴD) that is not the most recent version and is known to contain vulnerabilities. The vulnerable parts of the

library are not used by the app however, therefore there is no impact to security or privacy. However, using the most recent

version of libraries that do not contain any known vulnerabilities is always recommended, especially when future versions of

the app might contain code that does call vulnerable parts of the library.

Second, some cryptographic signatures used to validate the keys that unlock exposure notifications (so-called Temporary

Exposure Keys, or TEK s), are only partially checked. As a result, all holders of a certificate recently issued by KPN as part of the

PKIOverheid service, could in theory produce valid signatures. This partially violates the integrity requirements defined in the

architecture. However, because TEKs are protected in transit by a TLS connection and are also protected by an additional

cryptographic GAEN-signature, Secura was not able to identify a scenario where this flaw could be practically exploited by an

attacker.

Third, the app does not perform a check to see if it is running on a rooted or jailbroken device. Running any app on a rooted

(Android) or jailbroken (iOS) device introduces security and privacy risks and can harm the integrity of all apps and

communication. Not all users with a rooted or jailbroken device might be aware of this. A warning to users trying to install the

app on a rooted or jailbroken device could make them aware of the additional risks.

Fourth, decoy messages are sent in order to make it more difficult for attackers to gather any meaningful information from any

messages. However, when the app is disabled, decoy messages are still sent. This is not fully in compliance with the functional

requirements and under specific circumstances could help an attacker identify users of the app even if it is disabled.

ų.Ŵ. Recommendations
Secura BV recommends the following:

• Validate that the ”Subject Name”-section of the TEKs signing certificate contains the correct ”Common Name”-field

(CN).

• Show a warning to users that attempt to install the app on jailbroken or rooted devices.

• Update the OpenSSL library to the newest version that does not include publicly known vulnerabilities.

• Disable sending of decoy messages when the app is disabled.

© Secura BV, ŵųŵų Ŵ of ŸŻ

CONFIDENTIAL

ų.ŵ. Conclusion
Minor improvements to the apps can be made that further strengthen the security and privacy measures already implemented.

No material or significant deviations from the security and privacy requirements were identified, and no hidden, unwanted,

malicious or suspect functionality was identified in the source code of the apps.

ų.Ŷ. Limitations of the assessment
The main focus of this assessment was on security vulnerabilities and the impact on the privacy of its users. For this a source

code review of the publicly available code was performed. Additionally, towards the end of the assessment, working

applications were made available by MinVWS so that Secura could verify information from the source code. The following

items were explicitly out of scope for this assessment:

• The underlying Operating System (iOS and Android) and the hardware (including Bluetooth) of the devices.

• The Apple/Google exposure notification API (GAEN).

• The source code of Ŷrd party software libraries.

• Licenses of Ŷrd party software libraries.

• The backend server.

• Maintainability of the codebase.

ų.ŷ. Final Notes
If MinVWS has any questions with regards to the assessment or presented results, or requires further clarifications, please

contact Secura BV.

© Secura BV, ŵųŵų ŵ of ŸŻ

CONFIDENTIAL

ŵ. TECHNICAL SUMMARY

This chapter provides a technical overview of all findings in this report. More detailed information can be found in the actual

findings later in this report.

Ŵ.ų. Research questions
The ”Programma van eisen” as published by MinVWS includes a number of assumptions that cover the security and privacy

requirements of the application. These assumptions are specifically tested in this report, listed as requirements in the following

sections.

Ŵ.ų.ų. Requirements with inconsistencies
In the following requirements, inconsistencies have been found.

Requirement [FŸ] The application can be temporarily disabled. When the user enables the application at a later

moment it functions as normal. During a deactivated phase, no information will be collected or

sent. Additionally, a user will receive a reminder to enable the application again.

Results Decoy messages will still be sent, even if Exposure Notification is disabled.

Reference See section ŷ.Ź.Ŵ on page ŵŵ.

Requirement [FŻ] The application removes contact codes that are older then Ŵŷ days.

Results A minor inconsistency is that the application does not specify this timeframe, however, the Ŵŷ

day deletion is implicit in the use of the underlying Google Apple Exposure Notification (GAEN).

Reference See section ŷ.ż on page ŵŷ.

Requirement [Qŵŵ] Data processed by the application can not be traced to an individual person.

Results There are two ways how the backend can potentially identify users, both should be covered

as discussed in the DPIA. However, since the backend was not in scope for this assessment, no

assurances can be given.

Reference See section ŷ.ŴŸ on page ŶŹ.

Requirement Correct use of software libraries and library versions

Results At the time of writing, a number of libraries were out of date. Specifically one OpenSSL library

used by the iOS application, which was released on Ŵų September ŵųŴż. Since its release, two

security bugs were made public that affect this version: CVE-ŵųŴż-ŴŸŸŴ and CVE-ŵųŵų-ŴżŹź. These

bugs do not affect the security of the CoronaMelder app, because the library is only used to

validate certificates and the bugs do not affect that process. It is nonetheless recommended to

upgrade to the most current version, as a general best practice.

Reference See section ŷ.ŵŴ on page ŷŷ.

© Secura BV, ŵųŵų Ŷ of ŸŻ

CONFIDENTIAL

Best Practice Protection of the integrity of the application: No installation on rooted/jailbroken devices

Results The application can be installed on rooted/jailbroken devices. This is in line with a concious choice

made by the developers and discussed in the documentation. However, end users should be

informed via a message of the risks of using the application on such a device.

Reference See section ŷ.ŵŹ on page ŸŶ.

Additionally an inconsistency was found that was not an original research questions:

Best Practice TEK signatures should not be forgeable by an attacker

Results Any leaf certificate recently issued by KPN as part of the PKIOverheid service would be accepted

by the application. If an attacker would manage to obtain a key corresponding to such a certificate,

they could forge TEK signatures. However, no exploitable scenario could be devised for this

weakness.

Reference See section ŷ.ŵŶ on page ŷż.

Ŵ.ų.Ŵ. Mapping of requirements
The following table lists the assessed requirements and the corresponding section of the report:

Requirement Reference

UŴŶ: Statistical anonymous data can be collected, but only if this is required to monitor the

effectiveness of the application.

ŷ.Ŷ on page Ŵŵ

FŶ: The application gives the user an unique, anonymous contact code that changes multiple

times per day.

ŷ.ŷ on page ŴŹ

Fŷ: The user can uninstall the application at any time. All data associated with the application

should be removed from the device in this instance.

ŷ.Ÿ on page ŴŹ

FŸ: The application can be temporarily disabled. When the user enables the application at a later

moment it functions as normal. During a deactivated phase, no information will be collected or

sent. Additionally, a user will receive a reminder to enable the application again.

ŷ.Ź on page ŴŻ

FŹ: The application collects anonymous contact codes of all users during a configured timeframe

in a configured distance. For example ŴŸ minutes within Ŵ,Ÿ meters.

ŷ.ź on page ŵŶ

Fź: The criteria on which the application registers a contact can be configured in a central location. ŷ.Ż on page ŵŶ

FŻ: The application removes contact codes that are older then Ŵŷ days. ŷ.ż on page ŵŷ

Fż: The application collects periodically and incrementally contact codes from recent exposures

from the server.

ŷ.Ŵų on page Ŷų

FŴų: The frequency of collecting data from the server can be centrally configured. ŷ.ŴŴ on page Ŷų

FŴŴ: The application warns a user automatically if there was a possible exposure, based on relevant

contact (ie ŴŸ minutes within Ŵ,Ÿ meters) with a confirmed infected person.

ŷ.Ŵŵ on page ŶŴ

QŴŶ: When the application is unable to communicate because of networking issues, the user will

be notified.

ŷ.ŴŶ on page Ŷŵ

QŴŷ: When the application is unable to communicate because of loss of required technology, the

user will be notified.

ŷ.Ŵŷ on page ŶŸ

Continues on the next page...

© Secura BV, ŵųŵų ŷ of ŸŻ

CONFIDENTIAL

Table ŵ.Ŵ (continued)

Requirement Reference

Qŵŵ: Data processed by the application can not be traced to an individual person. ŷ.ŴŸ on page ŶŹ

QŵŶ: The application does not use location data. ŷ.ŴŹ on page Ŷż

QŵŹ: Contact codes are not based on personal information. ŷ.Ŵź on page ŷŵ

QŵŻ: Use of the application is only possible after explicit consent by the user. ŷ.ŴŻ on page ŷŵ

Generation, storage and transmission of local log files ŷ.Ŵż on page ŷŶ

Secure local storage of data and secure deletion of contact codes ŷ.ŵų on page ŷŷ

Protected communication with the backend servers ŷ.ŵŵ on page ŷŹ

Protection against Man-in-the-Middle attacks ŷ.ŵŵ on page ŷŹ

Correct use of the Google and Apple Exposure API’s ŷ.ŵŷ on page Ÿŵ

Correct use of software libraries and library versions ŷ.ŵŴ on page ŷŷ

Correct use of application permissions ŷ.ŵŸ on page Ÿŵ

Protection of the integrity of the application: No installation on rooted/jailbroken devices ŷ.ŵŹ on page ŸŶ

Table ŵ.Ŵ: Overview of requirements

Ŵ.Ŵ. Most Important Findings
This section highlights the most important findings in this report.

Risk Note Ŵ Decoy messages not disabled when Exposure notification is disabled. CVSSvŶ Ŷ.ź

Description The decoy upload scheduler does not seem to take the disabled status of the application

in to account. While this is not a security vulnerability, it might be not intuitive for

users of the application. For more information see section ŷ.Ź on page ŴŻ.

Risk The application possibly performs actions that are not in line with the end user’s

intention. Additionally, in a Man-in-the-Middle (MitM) scenario, an attacker might be

able to detect whether this application is installed.

Recommendation Also disable decoy uploads when the application is disabled.

Applies to CoronaMelder application

© Secura BV, ŵųŵų Ÿ of ŸŻ

CONFIDENTIAL

Risk Note ŵ Outdated library used in iOS application: OpenSSL CVSSvŶ ų.ų

Description OpenSSL version Ŵ.Ŵ.ŴD is used by the iOS application, which was released on Ŵų Septem-

ber ŵųŴż. Since its release, two security bugs were made public that affect this version:

CVE-ŵųŴż-ŴŸŸŴ and CVE-ŵųŵų-ŴżŹź. These bugs do not affect the security of the Coro-

naMelder app, because the library is only used to validate certificates and the bugs

do not affect that process. It is nonetheless recommended to upgrade to the most

current version, as a general best practice. For more information see the description in

section ŷ.ŵŴ on page ŷŷ.

Risk When this library would be used for TLS connections, it would be possible to perform

a denial of service of a client under specific circumstances via the use of a publicly

known vulnerability. In order to prevent issues in future iterations when this library

might be used in another way, it is nonetheless recommended to upgrade to the most

current version.

Recommendation Upgrade the software to a version without known vulnerabilities.

Applies to CoronaMelder application (iOS)

Risk Note Ŷ The subject name in the certificate used for TEK signing is not checked. CVSSvŶ Ŵ.ż

Description When validating the second signature (using the certificate based CMS/PKCS#ź format)

on a TEK list received by the server, the root and issuing CA certificates within the chain

are checked. The subject name in the leaf certificate is not validated. See section ŷ.ŵŶ

on page ŷż for more information.

Risk Any leaf certificate recently issued by KPN as part of the PKIOverheid service would

be accepted by the SignatureValidator class. If an attacker would manage to
obtain a key corresponding to such a certificate, they could forge TEK signatures. This

violates the integrity requirements defined in the architecture documentation. Because

TEKs are also protected in transit by TLS connection, and have additional protection

due to the GAEN signature, it has not become clear during this assessment how this

flaw could be practically exploited by an attacker.

Recommendation Validate that the Subject of the signature certificate contains the correct Common

Name (CN).

Applies to CoronaMelder application

© Secura BV, ŵųŵų Ź of ŸŻ

CONFIDENTIAL

Remark Ŵ The backend can potentially link TEKs an individual person

Description The backend — which itself is out of scope of this assessment — can perform IP

stripping, as is shown the ‘Backend overview’ architecture diagramŴ If the IP stripping

takes place after TLS offloading, the combination of the user’s IP address and TEKs is

accessible, at least temporarily while a request is being processed. This finding has

not been verified on the backend since that was out of scope for this assessment. For

more information see section ŷ.ŴŸ.Ŵ on page ŶŹ

Recommendation One way to prevent this is to ensure the app does not communicate to the backend

directly, but that the communication is brokered via an anonymising network, see the

DPIA for more information. TLS encryption will still ensure confidentiality and integrity

of the communication between the user and the backend.

Applies to CoronaMelder application

Remark ŵ The backend can potentially link confirmation keys or bucket id’s to an individual

Description An attacker who has access to the backend (prior to IP addresses being stripped)may be

able to infer uniquely identifying patterns of times and IP addresses linked to a known

bucket id or confirmation key. This finding has not been verified on the backend since

that was out of scope for this assessment. For more information see section ŷ.ŴŸ.Ŵ.Ŵ on

page Ŷź.

Recommendation One way to prevent this is to ensure the app does not communicate to the backend

directly, but that the communication is brokered via an anonymising network, such as a

custom/private onion routing network operated by entities who are independent from

the government and the infrastructure hosting party. TLS encryption will still ensure

confidentiality and integrity of the communication between the user and the backend.

Applies to CoronaMelder application

Remark ŷ No notification for installation on jailbroken / rooted devices

Description The application does not detect if it is installed on a jailbroken/rooted device. All of the

application’s functionality can be used after installation on a jailbroken/rooted device.

This is a concious decision as detailed in the architecture documentation. For more

information see section ŷ.ŵŸ on page Ÿŵ.

Recommendation Detect if the application is installed on a jailbroken device and notify the user about

the possible implications.

Applies to CoronaMelder application

Ŵ.ŵ. Overview of Findings
The following table contains links to all findings in this report. Note that these findings are clickable in the PDF to jump to the

referenced page.

© Secura BV, ŵųŵų ź of ŸŻ

CONFIDENTIAL

Finding Topic Reference

Risk Note Ŵ Decoy messages not disabled when Exposure notification is disabled. Page ŵŵ

Risk Note ŵ Outdated library used in iOS application: OpenSSL Page ŷŸ

Risk Note Ŷ The subject name in the certificate used for TEK signing is not checked. Page Ÿŵ

Remark Ŵ The backend can potentially link TEKs an individual person Page Ŷź

Remark ŵ The backend can potentially link confirmation keys or bucket id’s to an individual Page Ŷż

Remark Ŷ Decoy traffic is only sent during office hours. Page Ŷż

Remark ŷ No notification for installation on jailbroken / rooted devices Page Ÿŷ

Table ŵ.ŵ: Summary of identified findings

© Secura BV, ŵųŵų Ż of ŸŻ

CONFIDENTIAL

Ŷ. DESCRIPTION OF THE ENGAGEMENT

This engagement is based on the proposal “ŵųųŹųŸŵŷ.ųŵ-MinVWS-Corona App” which includes the following description (in

Dutch):

Het ministerie van Volksgezondheid, Welzijn en Sport is een Nederlands ministerie. Dit ministerie draagt in de

eerste plaats de zorg voor de volksgezondheid.

MinVWS wilt gebruik gaan maken van de Corona applicatie voor zowel iOS en Android. Het gebruik hiervan

brengt IT-beveiligingsrisico’s met zich mee. MinVWS wil deze risico’s inzichtelijk maken en op een aanvaardbaar

niveau brengen. Bovendien moet MinVWS voldoen aan wet- en regelgeving en bepaalde normen, zoals de AVG.

ŵ.ų. Scope of the Assessment
The scope of the assessment is shown in table Ŷ.Ŵ. No other systems or applications were assessed.

Identification Description

https://github.com/minvws/nl-covid19-notification-
app-android/releases/tag/v1.0.0

Version Ŵ.ų of the Android source

https://github.com/minvws/nl-covid19-notification-
app-ios/releases/tag/1.0

Version Ŵ.ų of the iOS source

Table Ŷ.Ŵ: Target systems and applications

Additionally, working applications were made available by MinVWS so that Secura can verify information from the source

code.

The following items are explicitly out of scope for this assessment:

• The underlying Operating System (iOS and Android) and the hardware (including Bluetooth) of the devices

• The Apple/Google exposure notification API

• The source code of Ŷrd party software libraries

• Licenses of Ŷrd party software libraries

• The backend server

• Maintainability of the codebase

ŵ.Ŵ. Information Provided
MinVWS has not provided Secura with additional information to perform this investigation. This is because the available

information is public. The design and architecture documentation was provided in the following repositories:

• https://github.com/minvws/nl-covid19-notification-app-design
• https://github.com/minvws/nl-covid19-notification-app-coordination

ŵ.ŵ. Goal of the Assessment
The goal of this assignment was to independently determine the effectiveness of the security measures implemented to

protect the CoronaMelder application, by identifying potential vulnerabilities in this application and to suggest possible

improvements to its security. An additional goal was to test whether the CoronaMelder app function correctly without

impacting a user’s privacy.

© Secura BV, ŵųŵų ż of ŸŻ

https://github.com/minvws/nl-covid19-notification-app-android/releases/tag/v1.0.0
https://github.com/minvws/nl-covid19-notification-app-android/releases/tag/v1.0.0
https://github.com/minvws/nl-covid19-notification-app-ios/releases/tag/1.0
https://github.com/minvws/nl-covid19-notification-app-ios/releases/tag/1.0
https://github.com/minvws/nl-covid19-notification-app-design
https://github.com/minvws/nl-covid19-notification-app-coordination

CONFIDENTIAL

ŵ.Ŷ. Reporting
The management and technical summaries are intended to provide a high level overview for management and technical staff.

The remaining chapters contain more detailed content with reproducible findings to support technical staff in reproduction and

mitigation of the identified issues. Detailed scan results and supporting evidence is included in the appendices.

ŵ.ŷ. Approach
The assessment of the application was performed using the crystal-box approach. This approach uses various methods to find

vulnerabilities. Automated tests examined the presence of known software packages to identify known vulnerabilities and

configuration errors. Manual assessments were also performed to identify potential vulnerabilities that would have not been

found through automation. Source code reviews identified specific vulnerabilities, such as logic errors, that would not have

been found through the previous methods.

The research questions / assumptions as discussed in the previous chapter were used as a guideline to perform this

assessment.

In a crystal-box investigation, extensive information is provided to Secura concerning the software, such as the source code,

configuration files, log files, and internal documentation.

ŵ.Ÿ. Limitations
A security assessment provides valuable insight into the security of the target system or application. However, it is a snapshot

in time and does not provide assurance on the overall security level of the environment and the data. New types of attacks are

discovered regularly and small changes in the environment can introduce new vulnerabilities. Processes and procedures, as

well as human factors play at least as large a role as technology in information security. This report provides an overview of

identified findings and is not an assurance report.

© Secura BV, ŵųŵų Ŵų of ŸŻ

CONFIDENTIAL

ŷ. APPLICATION ASSESSMENT

The main focus of this source code assessment was to identify security vulnerabilities and to determine their impact to the

privacy of users of the CoronaMelder app.

”Does the CoronaMelder app function correctly without impacting a user’s privacy, in addition to the absence of

security vulnerabilities.

Ŷ.ų. Application version
During the assessment there were multiple updates to the source code. This report is based on the Android and iOS code

versions tagged Ŵ.ų, which can be found on the following locations:

• https://github.com/minvws/nl-covid19-notification-app-android/releases/tag/v1.0.0
• https://github.com/minvws/nl-covid19-notification-app-ios/releases/tag/1.0

Ŷ.Ŵ. Research questions
The ”Programma van eisen” as published by MinVWS includes a number of assumptions that cover the security and privacy

requirements of the application. These assumptions are specifically tested in this report, listed as requirements in the following

subsection.

UŴŶ Statistical anonymous data can be collected, but only if this is required to monitor the effectiveness of the application.

FŶ The application gives the user an unique, anonymous contact code that changes multiple times per day.

Fŷ The user can uninstall the application at any time. All data associated with the application should be removed from the

device in this instance.

FŸ The application can be temporarily disabled. When the user enables the application at a later moment it functions as

normal. During a deactivated phase, no information will be collected or sent. Additionally, a user will receive a reminder

to enable the application again.

FŹ The application collects anonymous contact codes of all users during a configured timeframe in a configured distance.

For example ŴŸ minutes within Ŵ,Ÿ meters.

Fź The criteria on which the application registers a contact can be configured in a central location.

FŻ The application removes contact codes that are older then Ŵŷ days.

Fż The application collects periodically and incrementally contact codes from recent exposures from the server.

FŴų The frequency of collecting data from the server can be centrally configured.

FŴŴ The application warns a user automatically if there was a possible exposure, based on relevant contact (ie ŴŸ minutes

within Ŵ,Ÿ meters) with a confirmed infected person.

QŴŶ When the application is unable to communicate because of networking issues, the user will be notified.

QŴŷ When the application is unable to communicate because of loss of required technology, the user will be notified.

Qŵŵ Data processed by the application can not be traced to an individual person.

QŵŶ The application does not use location data.

QŵŹ Contact codes are not based on personal information.

QŵŻ Use of the application is only possible after explicit consent by the user.

Additionally an assessment will be performed to determine whether an attacker can manipulate the application. The research

questions for this are defined as follows:

• Generation, storage and transmission of local log files

• Secure local storage of data and secure deletion of contact codes

• Protected communication with the backend servers

• Protection against Man-in-the-Middle attacks

• Correct use of the Google and Apple Exposure API’s

• Correct use of software libraries and library versions

© Secura BV, ŵųŵų ŴŴ of ŸŻ

https://github.com/minvws/nl-covid19-notification-app-android/releases/tag/v1.0.0
https://github.com/minvws/nl-covid19-notification-app-ios/releases/tag/1.0

CONFIDENTIAL

• Correct use of application permissions

As mentioned in the scope, the following items are explicitly out of scope for this assessment:

• The underlying Operating System (iOS and Android) and the hardware (including Bluetooth) of the devices

• The Apple/Google exposure notification API

• The source code of Ŷrd party software libraries

• Licenses of Ŷrd party software libraries

• The backend server

• Maintainability of the codebase

Ŷ.ŵ. Uųŵ - Data collection

Requirement UŴŶ: Statistical anonymous data can be collected, but only if this is required to monitor the

effectiveness of the application.

Conclusion Secura finds no inconsistencies to this requirement.

Ŷ.ŵ.ų. iOS
The app offers the following methods to log information, as defined in the Logging class:

• logDebug
• logInfo

• logWarning
• logError

Of these, the application only uses logDebug and logError. Additionally, the app uses the CocoaLumberjack library
and configures it with a DDOSLogger, that uses the os_log call:

DDLog.add(DDOSLogger.sharedInstance) // Uses os_log

According to Apple’s documentationŴ, log messages at DEBUG level are not saved in the local storage.

It is possible to omit some data from logs by using the %{private}modifier, but the code does not use this. In fact, the
DDOSLogger logs every message with the %{public}modifier under the hood:

vendor/CocoaLumberjack/Sources/CocoaLumberjack/DDOSLogger.m
102: os_log_error(logger, "%{public}s", msg);
106: os_log_info(logger, "%{public}s", msg);
111: os_log_debug(logger, "%{public}s", msg);

By default, the os_logmethod will redact dynamic strings and complex dynamic objects, but this modifier will not redact
them. The app does not use this facility to redact sensitive data from log files. However, A quick inspection of calls to

logError did not show sensitive information being logged.

Calls to logDebug however show information such as exposure reports and HTTP responses being logged. All can contain

sensitive information. Since debug messages are not persisted, the only way for an attacker to see these would be to get access

to someone’s phone, run the application with debug logging enabled, and watch the logs via an USB connection.

The app also stores data. The StorageController defines two types of storage: secure and insecure. secure uses
the keychain, while insecure uses the (sandboxed) filesystem, or memory. The keychain offers more possibilities to protect

ŴSource: https://developer.apple.com/documentation/os/logging/generating_log_messages_from_your_code?language
=occ

© Secura BV, ŵųŵų Ŵŵ of ŸŻ

https://developer.apple.com/documentation/os/logging/generating_log_messages_from_your_code?language=occ
https://developer.apple.com/documentation/os/logging/generating_log_messages_from_your_code?language=occ

CONFIDENTIAL

data, such as requiring a user to unlock the data explicitly before the app can access it. The app configuration files did not

mention anything keychain related, which means that it will not share the keychain with other apps.

ExposureDataController defines the following storages:

struct ExposureDataStorageKey {
static let labConfirmationKey = CodableStorageKey <LabConfirmationKey >
(name: "labConfirmationKey", storeType: .secure)
static let uploadedRollingStartNumbers = CodableStorageKey <[UInt32]>
(name: "uploadedRollingStartNumbers", storeType: .secure)
static let appManifest = CodableStorageKey <ApplicationManifest >
(name: "appManifest", storeType: .insecure(volatile: true))
static let appConfiguration = CodableStorageKey <ApplicationConfiguration >
(name: "appConfiguration", storeType: .insecure(volatile: true))
static let exposureKeySetsHolders = CodableStorageKey <[ExposureKeySetHolder]>
(name: "exposureKeySetsHolders", storeType: .insecure(volatile: false))
static let lastExposureReport = CodableStorageKey <ExposureReport >
(name: "exposureReport", storeType: .secure)
static let lastExposureProcessingDate = CodableStorageKey <Date>
(name: "lastExposureProcessingDate", storeType: .insecure(volatile: false))
static let lastLocalNotificationExposureDate = CodableStorageKey <Date>
(name: "lastLocalNotificationExposureDate", storeType: .insecure(volatile: false))
static let lastENStatusCheck = CodableStorageKey <Date>
(name: "lastENStatusCheck", storeType: .insecure(volatile: false))
static let exposureConfiguration = CodableStorageKey <ExposureRiskConfiguration >
(name: "exposureConfiguration", storeType: .insecure(volatile: false))
static let pendingLabUploadRequests = CodableStorageKey <[PendingLabConfirmationUp

loadRequest]>
(name: "pendingLabUploadRequests", storeType: .secure)
static let firstRunIdentifier = CodableStorageKey <Bool>
(name: "firstRunIdentifier", storeType: .insecure(volatile: false))
static let exposureApiCallDates = CodableStorageKey <[Date]>
(name: "exposureApiCalls", storeType: .insecure(volatile: false))
}

These are the only storages that the StorageController uses. None of the data in storage marked insecure contains
information that one can directly relate to an exposure.

The production version of the app uses the following entitlements:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList -1.0.dtd">
<plist version="1.0">
<dict>

<key>com.apple.developer.default-data-protection </key>
<string>NSFileProtectionCompleteUntilFirstUserAuthentication</string>
<key>aps-environment </key>
<string>production</string>
<key>com.apple.developer.exposure-notification </key>
<true/>

</dict>
</plist>

© Secura BV, ŵųŵų ŴŶ of ŸŻ

CONFIDENTIAL

The data protection setting means that only this app can access the file. According to

https://wojciechkulik.pl/ios/data-protection-on-ios-security-overview:

The class key is protected with a key derived from the user passcode and the device UID. This class behaves in the

same way as Complete Protection, except that the decrypted class key isn’t removed from memory when the

device is locked.

Ŷ.ŵ.Ŵ. Android
The application uses uses WorkManager diagnostics, according to the Android Manifest:

[...]
<receiver android:name="androidx.work.impl.diagnostics.DiagnosticsReceiver"

android:permission="android.permission.DUMP" android:enabled="true" android:
exported="true" android:directBootAware="false">

<intent -filter >
<action android:name="androidx.work.diagnostics.REQUEST_DIAGNOSTICS

"/>
</intent -filter >

</receiver >
[...]
</manifest>

The following command was run in order to obtain diagnostics dataŵ:

adb shell am broadcast -a "androidx.work.diagnostics.REQUEST_DIAGNOSTICS" -p "nl.
rijksoverheid.en"
Broadcasting: Intent { act=androidx.work.diagnostics.REQUEST_DIAGNOSTICS pkg=nl.
rijksoverheid.en }
Broadcast completed: result=0

The following data was obtaining by running adb logcat:

Process nl.rijksoverheid.en created for broadcast nl.rijksoverheid.en/androidx.work
.impl.diagnostics.DiagnosticsReceiver

PID: 26167 UID: GIDs:

System W ClassLoader referenced unknown path: /data/app/nl.
rijksoverheid.en-1/lib/x86

EnApplication D onCreate
WM-DiagnosticsRcvr D Requesting diagnostics

WM-PackageManagerHelper D androidx.work.impl.background.systemjob.
SystemJobService enabled

WM-Schedulers D Created SystemJobScheduler and enabled SystemJobService
WM-ForceStopRunnable D Performing cleanup operations.

WM-PackageManagerHelper D androidx.work.impl.background.systemalarm.
RescheduleReceiver enabled

WM-SystemJobScheduler D Scheduling work ID f9c02602 -db1e-4abc-9520-270537b92cb1
Job ID 0

WM-GreedyScheduler D Starting work for f9c02602 -db1e-4abc-9520-270537b92cb1
WM-Processor D Processor: processing f9c02602 -db1e-4abc-9520-270537

b92cb1

ŵhttps://developer.android.com/jetpack/androidx/releases/work

© Secura BV, ŵųŵų Ŵŷ of ŸŻ

https://wojciechkulik.pl/ios/data-protection-on-ios-security-overview

CONFIDENTIAL

WM-WorkerWrapper D Starting work for androidx.work.impl.workers.
DiagnosticsWorker

WM-DiagnosticsWrkr I Running work:
I Id Class Name Job Id State Unique

Name Tags
I f9c02602 -db1e -4abc -9520-270537b92cb1 androidx.work.

impl.workers.DiagnosticsWorker 0 RUNNING androidx.work.impl.
workers.DiagnosticsWorker

WM-WorkerWrapper D androidx.work.impl.workers.DiagnosticsWorker returned a
Success {mOutputData=Data {}} result.

I Worker result SUCCESS for Work [id=f9c02602 -db1e-4abc
-9520-270537b92cb1, tags={ androidx.work.impl.workers.DiagnosticsWorker }]
WM-PackageManagerHelper D androidx.work.impl.background.systemalarm.
RescheduleReceiver disabled

WM-Processor D Processor f9c02602 -db1e-4abc-9520-270537b92cb1 executed
; reschedule = false

WM-GreedyScheduler D Cancelling work ID f9c02602 -db1e-4abc-9520-270537b92cb1
WM-Processor D Processor stopping background work f9c02602 -db1e-4abc

-9520-270537b92cb1
D WorkerWrapper could not be found for f9c02602 -db1e-4abc

-9520-270537b92cb1
WM-StopWorkRunnable D StopWorkRunnable for f9c02602 -db1e-4abc-9520-270537

b92cb1; Processor.stopWork = false
WM-DiagnosticsRcvr D Requesting diagnostics

WM-PackageManagerHelper D androidx.work.impl.background.systemalarm.
RescheduleReceiver enabled

WM-SystemJobScheduler D Scheduling work ID 0d09beba -3499-45dc-a68d-1e1fbf0c16fb
Job ID 1

WM-GreedyScheduler D Starting work for 0d09beba -3499-45dc-a68d-1e1fbf0c16fb
WM-Processor D Processor: processing 0d09beba -3499-45dc-a68d-1

e1fbf0c16fb
WM-WorkerWrapper D Starting work for androidx.work.impl.workers.

DiagnosticsWorker
WM-DiagnosticsWrkr I Recently completed work:

I Id Class Name Job Id State Unique
Name Tags

I f9c02602 -db1e -4abc -9520-270537b92cb1 androidx.work.
impl.workers.DiagnosticsWorker null SUCCEEDED androidx.work.impl.
workers.DiagnosticsWorker

I Running work:
I Id Class Name Job Id State Unique

Name Tags
I 0d09beba -3499-45dc-a68d -1e1fbf0c16fb androidx.work.

impl.workers.DiagnosticsWorker 1 RUNNING androidx.work.impl.
workers.DiagnosticsWorker

WM-WorkerWrapper D androidx.work.impl.workers.DiagnosticsWorker returned a
Success {mOutputData=Data {}} result.

I Worker result SUCCESS for Work [id=0d09beba -3499-45dc-
a68d-1e1fbf0c16fb , tags={ androidx.work.impl.workers.DiagnosticsWorker }]
WM-PackageManagerHelper D androidx.work.impl.background.systemalarm.
RescheduleReceiver disabled

WM-Processor D Processor 0d09beba -3499-45dc-a68d-1e1fbf0c16fb executed
; reschedule = false

© Secura BV, ŵųŵų ŴŸ of ŸŻ

CONFIDENTIAL

WM-GreedyScheduler D Cancelling work ID 0d09beba -3499-45dc-a68d-1e1fbf0c16fb
WM-Processor D Processor stopping background work 0d09beba -3499-45dc-

a68d-1e1fbf0c16fb
D WorkerWrapper could not be found for 0d09beba -3499-45dc

-a68d-1e1fbf0c16fb
WM-StopWorkRunnable D StopWorkRunnable for 0d09beba -3499-45dc-a68d-1

e1fbf0c16fb; Processor.stopWork = false

No personal or sensitive information was observed in the collected diagnostic data. Additionally, no other sensitive diagnostics

data was recovered from the local storage of the application.

Ŷ.Ŷ. Fŵ - Anonymous contact codes

Requirement FŶ: The application gives the user an unique, anonymous contact code that changes multiple

times per day.

Conclusion Secura finds no inconsistencies to this requirement.

This functionality is completely covered by the correct use of the Google/Apple Exposure Notification (GAEN). Also, no other

code was discovered that attempted to create these contact codes. Therefore it is out of scope for this assessment.

Ŷ.ŷ. FŶ - Secure uninstallation

Requirement Fŷ: The user can uninstall the application at any time. All data associated with the application

should be removed from the device in this instance.

Conclusion Secura finds no inconsistencies to this requirement.

Ŷ.ŷ.ų. iOS
The filesystem locations where the app stores its data depends on whether the data is classified as volatile or not. The code for

this is:

private func storeUrl(isVolatile: Bool) -> URL? {
let base = isVolatile ? localPathProvider.path(for: .cache) :

localPathProvider.path(for: .documents)

return base?.appendingPathComponent("store")
}

The class LocalPathProvider defines these locations, to be the application’s cache directory (volatile) and documents directory

(non-volatile). Both locations are correctly deleted when uninstalling the application.

Ŷ.ŷ.Ŵ. Android
Android also stores all data in the app’s local sandbox directory which is structured as follows:

tree /data/data/nl.rijksoverheid.en
nl.rijksoverheid.en
|-- cache
| `-- http
| |-- 459c7bf8530fbb9e7af2fa5759a09d85.0

© Secura BV, ŵųŵų ŴŹ of ŸŻ

CONFIDENTIAL

| |-- 459c7bf8530fbb9e7af2fa5759a09d85.1
| |-- cca3b8d69f895fb355b4b6d0332abcb8.0
| |-- cca3b8d69f895fb355b4b6d0332abcb8.1
| `-- journal
|-- code_cache
|-- databases
|-- no_backup
| `-- androidx.work.workdb
`-- shared_prefs

|-- nl.rijksoverheid.en.cache.xml
|-- nl.rijksoverheid.en.notifications.xml
|-- nl.rijksoverheid.en.onboarding.xml
`-- nl.rijksoverheid.en.testphase.xml

Sensitive data in the shared preferences was stored in an encrypted fashion:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>

<string name="__androidx_security_crypto_encrypted_prefs_value_keyset__">1286
[...]
676c65617069732e636f6d2f676f6f676c652e63727970746f2e74696e6b2e41657347636d4b6
579100118dee5d85d2001 </string>
<string name="__androidx_security_crypto_encrypted_prefs_key_keyset__">12a901
[...]
17069732e636f6d2f676f6f676c652e63727970746f2e74696e6b2e4165735369764b65791001
18d9e5c4c7072001 </string>

</map>

No data in other location was discovered. This is also supported by the fact that there is no WRITE_EXTERNAL_STORAGE
permission defined in the Android Manifest.

The application was also registered as available for the Exposure Notifications:

© Secura BV, ŵųŵų Ŵź of ŸŻ

CONFIDENTIAL

Figure ŷ.Ŵ: Exposure Notifications settings

The application was uninstalled via the standard Android uninstallation process. All data from the

/data/data/nl.rijksoverheid.en directory was removed. Also the application was removed from the Exposure

Notifications settings.

Ŷ.Ÿ. Fŷ - Temporary disabling the application

Requirement The application can be temporarily disabled. When the user enables the application at a later

moment it functions as normal. During a deactivated phase, no information will be collected or

sent. Additionally, a user will receive a reminder to enable the application again.

Conclusion Decoy messages will still be sent, even if Exposure Notification is disabled.

The user can disable the app via the settings menu, according to the user interface design linked from

https://github.com/minvws/nl-covid19-notification-app-design. Also the texts for the corresponding
screen suggest to open the settings:

"enableSettings.exposureNotifications.title" = "Enable contact notifications";
"enableSettings.exposureNotifications.action" = "Open Settings";
"enableSettings.exposureNotifications.step1" = "Open Settings on your phone
using the button below";

© Secura BV, ŵųŵų ŴŻ of ŸŻ

https://github.com/minvws/nl-covid19-notification-app-design

CONFIDENTIAL

"enableSettings.exposureNotifications.step2" = "Turn on contact notifications";
"enableSettings.exposureNotifications.step2.action.title" = "Notifications about
exposure to COVID -19";

The button opens the settings via the URL UIApplication.openSettingsURLString. The app introduces a setting
named exposureNotifications.The app maintains an ExposureState object in the ExposureStateStream
class. The field currentExposureState gives the exposure state at that moment. The ExposureState class has two
substates:

struct ExposureState: Equatable {
let notifiedState: ExposureNotificationState
let activeState: ExposureActiveState

}

The first has just two values: ‘notified + the date of notification’, or ‘not notified’

enum ExposureNotificationState: Equatable {
case notified(Date)
case notNotified

}

The active state has four main values:

enum ExposureActiveState: Equatable {
/// Exposure Notification is active
case active

/// Exposure Notification is inactive , inactiveState contains the reason why
case inactive(ExposureStateInactiveState)

/// No authorisation has been given yet
case notAuthorized

/// Authorisation has been explicitly denied
case authorizationDenied

}

If the state is inactive, there can be several substates:

enum ExposureStateInactiveState: Equatable {
case disabled
case bluetoothOff
case pushNotifications
case noRecentNotificationUpdates

}

If the user explicitly disables the app, the inactive state disabled would be true. bluetoothOffmeans Bluetooth has
been disabled, pushNotificationsmeans push notifications are disabled, and noRecentNotificationUpdates
means that the app did not update its information recently.

The following other source files refer to currentExposureState:

© Secura BV, ŵųŵų Ŵż of ŸŻ

CONFIDENTIAL

Sources/ENCore/App/Features/Main/Status/StatusViewController.swift
Sources/ENCore/App/Features/Main/MainViewController.swift
Sources/ENCore/App/Features/Onboarding/Models/OnboardingConsentManager.swift
Sources/ENCore/App/Features/DeveloperMenu/DeveloperMenuViewController.swift
Sources/ENCore/App/Features/ExposureController/ExposureController.swift

Ŷ.Ÿ.Ų.ų. MainViewController.swift

When the main view is loaded, the method viewDidLoad is called. This checks if the current state is disabled and if so, it
will request the user to give permission via ExposureController.requestExposureNotificationPermission.
Therefore, the user will get a notification to enable the app if it is disabled.

handleUpdateAppSettings will show the screen corresponding to the button updateAppSettings. It looks at the
exposure state. In case the app is inactive because Bluetooth is disabled, the app will ask to enable Bluetooth. If the user

disabled it, it will ask the user to enable the app. If push notifications are enabled, it will ask to enable push

notifications.

If there were no recent notification updates, the app will try to update via the local method updateWhenRequired (see
section ŷ.Ź.ų.Ÿ on the following page). Other reasons why the app could be inactive could be the result of programming errors,

but this code still detects such a situation and logs an error. If the app is not authorised yet, it will ask the user for permission

via requestExposureNotificationPermission. If authorisation is denied, it will go to the screen
enableExposureNotifications. If the app is active, this method will do nothing.

Ŷ.Ÿ.Ų.Ŵ. StatusViewController.swift

When the status view finished loading, viewDidLoad is called. This looks at the current exposure state and calls the local
method update. Depending on the current exposure state, this method selects the corresponding status view screen and will
show it.

Ŷ.Ÿ.Ų.ŵ. OnboardingConsentManager.swift

This class, used during the onboarding phase, uses the current exposure state to detect if Bluetooth is enabled, but also to ask

to enable exposure notifications. If the user has authorised the app, it will continue. If the user has not authorised the app, it

will ask the user for permission via ExposureController.requestExposureNotificationPermission, and
wait until the user has authorised the app. Note that it does not check for the state disabled, as this state is only relevant
after onboarding.

Ŷ.Ÿ.Ų.Ŷ. DeveloperMenuViewController.swift

The developer menu is only available is the app is built with the build option USE_DEVELOPER_MENU. It allows a developer
to change settings easily for testing purposes.

The developer menu shows the exposure state and notified state among other things. It looks at the current exposure state to

display it, and lets the user change the state via changeExposureState and changeNotified. It offers to set the state
to one of the following values:

.active,

.authorizationDenied ,

.inactive(.bluetoothOff),

.inactive(.disabled),

.inactive(.noRecentNotificationUpdates)

The method updateExposureState will change the current exposure state and refresh the developer menu
options.

© Secura BV, ŵųŵų ŵų of ŸŻ

CONFIDENTIAL

Ŷ.Ÿ.Ų.ŷ. ExposureController.swift

This class’ method updateWhenRequired looks at the current exposure state. If the app is active or inactive because of no
recent updates, it will call fetchAndProcessExposureKeySets, otherwise it will give an error.

This means that the app will not load any exposure keysets while it is disabled or does not have authorisation.

Ŷ.Ÿ.Ų.Ÿ. Other functionality

Uploading TEKs to the back-end happens interactively if the user chooses to do so. While the app is disabled, this functionality

would be hidden from any of the screens, and therefore the app will not accidentally upload any keys.

The decoy uploads however happen in the background. The method scheduleTasks asks the ExposureController if
the app is deactivated via isAppDectivated (sic) and will not schedule any background tasks if it is. In fact, it will then
remove all tasks.

scheduleTasks is called once from the RootRouter class in the method didEnterBackground, called whenever the
application is sent to run in the background.

If the app re-enters the foreground or becomes active, it will call refreshStatus on the ExposureController. This
will call updateStatusStream and updatePushNotificationState.

isAppDectivated calls the method of the same name on ExposureDataController, which checks the application
configuration via requestApplicationConfiguration and looks at the decativated (sic) attribute.

requestApplicationConfiguration in turn calls requestApplicationManifest and gets the configuration
section from it via the operation requestAppConfigurationOperation. The manifest itself is retrieved via the
operation requestManifestOperation.

Both operations are implemented in the classes RequestAppManifestDataOperation and
RequestAppConfigurationDataOperation respectively. In this case, the application configuration is the stored
configuration containing the server dictated settings.

Neither the attribute decativated, nor the attribute coronaMelderDeactivated, from which it is copied, are

documented in the backend API specification (see

https://petstore.swagger.io/?url=https://raw.githubusercontent.com/minvws/nl-covid19-
notification-app-coordination/master/architecture/api/apispec.yaml).

Decoy updates appear to continue working even if the application is locally disabled. This breaks requirement FŸ. One could

argue that this is to prevent an attacker to analyze traffic and see whether someone has disabled the app, but then the app

should also continue all other operations, or at least fake them, which it does not.

Other background tasks that also appear to be active even if the user has disabled the app, are scheduling updates and status

checks, via the methods scheduleUpdate and scheduleENStatusCheck respectively.

scheduleENStatusCheck schedules a task to run after one hour. The method handle on the
BackgroundController handles the exposure notification status check via handleENStatusCheck and after that,
schedules it again.

It checks the exposure notification status via the ExposureManager’s getExposureNotificationStatusmethod.
There is some synchronisation between the two via the ExposureController class.

The ExposureController has methods activate and deactivate, which call the ExposureManager’s method of
the same name. Only the activatemethod updates the status stream, by calling the ExposureManager’s method
getExposureNotificationStatus (which calls the GAEN library) and converts that result into a value to put on the
stream. The ExposureManager class is a wrapper around the GAEN library, imported as ExposureNotification. It

© Secura BV, ŵųŵų ŵŴ of ŸŻ

https://petstore.swagger.io/?url=https://raw.githubusercontent.com/minvws/nl-covid19-notification-app-coordination/master/architecture/api/apispec.yaml
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/minvws/nl-covid19-notification-app-coordination/master/architecture/api/apispec.yaml

CONFIDENTIAL

also has methods activate and deactivate, that call the GAEN library to enable or disable the exposure
notification.

Back in handleEnStatusCheck, if the state is already active, it skips the check. It looks at the ExposureController’s
method lastENStatusCheckDate, which gets the lastENStatusCheck object from the storageController. If it
cannot find this, it will call notifyUserENFrameworkDisabled If the last checkdate is less than ŵŷ hours ago, the task is
completed successfully, otherwise, it calls notifyUserEnFrameworkDisabled. This methods sends a push notification
to the user, and calls setLastEndStatusCheckDate on the ExposureController with the current date. This sets
the lastENStatusCheck object in the storageController to the current date.

This background tasks effectively checks every hour if the application has not been active for more than ŵŷ hours.

scheduleUpdate follows a similar pattern, but the interval is configurable. Both scheduleUpdate and handleUpdate
ask the ExposureManager for its authorizationStatus property. If the ExposureManager (and indirectly the
GAEN library) says the state is not authorised, no update task is scheduled.

handleUpdate looks at a stream of functions, which it will call. This stream is initialised with two events:

exposureController.updateWhenRequired ,
exposureController.processPendingUploadRequests

updateWhenRequired is discussed in section ŷ.Ź.ų.Ÿ on the previous page.

processPendingUploadRequests looks at the application configuration via
requestApplicationConfiguration, finds its padding parameters and uses them to via

processPendingLabConfirmationUploadRequestsOperation.

The ProcessPendingLabConfirmationUploadRequestsDataOperation operation processes a list of pending
upload requests via the method uploadPendingRequest, which calls the NetworkController’s postKeys
method.

Ŷ.Ÿ.ų. Submission of Decoys while application is disabled
On both iOS and Android, the decoy upload scheduler does not seem to take the disabled status of the application in to

account. While this is not a security vulnerability, it might be not intuitive for users of the application.

RISK NOTE Ŵ ŵųųŹųŸŵŷ-NŴ

Topic Decoy messages not disabled when Exposure notification is disabled.

Applies to CoronaMelder application

Description The decoy upload scheduler does not seem to take the disabled status of the application in

to account. While this is not a security vulnerability, it might be not intuitive for users of the

application. For more information see section ŷ.Ź on page ŴŻ.

Risk The application possibly performs actions that are not in line with the end user’s intention.

Additionally, in aMan-in-the-Middle (MitM) scenario, an attacker might be able to detect whether

this application is installed.

Recommendation Also disable decoy uploads when the application is disabled.

Reproduction See the description in section ŷ.Ź on page ŴŻ

Metadata Likelihood: Low, Impact: Low, CVSS-Score:Ŷ.ź CVSS:Ŷ.ų/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

© Secura BV, ŵųŵų ŵŵ of ŸŻ

CONFIDENTIAL

Ŷ.Ź. FŸ - Collection of anonymous contact codes

Requirement The application collects anonymous contact codes of all users during a configured timeframe in a

configured distance. For example ŴŸ minutes within Ŵ,Ÿ meters.

Conclusion Secura finds no inconsistencies to this requirement.

The GAEN library takes care of this. The app itself will not collect contact codes, it can only see which exposure TEKs have been

in contact with the phone, by asking the GAEN library for those keys, according to certain exposure criteria. Secura discovered

no vulnerabilities in the source code where these GAEN APIs are called. See section ŷ.ż on the following page.

Ŷ.ź. FŹ - Central configuration

Requirement The criteria on which the application registers a contact can be configured in a central location.

Conclusion Secura finds no inconsistencies to this requirement.

The central API offers a call to /riskcalculationparameters/{id} as defined in the documentationŶ.

Ŷ.ź.ų. iOS
The application manifest in the ApplicationManifest struct show the following fields, including risk calculation
parameters:

struct ApplicationManifest: Codable {
let exposureKeySetsIdentifiers: [String]
let riskCalculationParametersIdentifier: String
let appConfigurationIdentifier: String
let creationDate: Date
let iOSMinimumKillVersion: String?

}

The detectExposuresmethod in the ENManager class uses an ENExposureConfiguration object. This contains
the following fields:

protocol ExposureConfiguration {
var minimumRiskScope: UInt8 { get }
var attenuationLevelValues: [UInt8] { get }
var daysSinceLastExposureLevelValues: [UInt8] { get }
var durationLevelValues: [UInt8] { get }
var transmissionRiskLevelValues: [UInt8] { get }
var attenuationDurationThresholds: [Int] { get }

}

detectExposures is part of the ExposureNotification APIŷ.

The class RequestExposureConfigurationDataOperation contains code to update and store this
configuration.

ŶSource: https://raw.githubusercontent.com/minvws/nl-covid19-notification-app-coordination/master/architectu
re/api/apispec.yaml
ŷSource: https://developer.apple.com/documentation/exposurenotification/enmanager/3586331-detectexposures

© Secura BV, ŵųŵų ŵŶ of ŸŻ

https://raw.githubusercontent.com/minvws/nl-covid19-notification-app-coordination/master/architecture/api/apispec.yaml
https://raw.githubusercontent.com/minvws/nl-covid19-notification-app-coordination/master/architecture/api/apispec.yaml
https://developer.apple.com/documentation/exposurenotification/enmanager/3586331-detectexposures

CONFIDENTIAL

Ŷ.ź.Ŵ. Android
Within the Android source code, a similar function is defined that sets these values:

private suspend fun getConfigurationFromManifest(manifest: Manifest):
ExposureConfiguration {

val riskCalculationParameters =
api.getRiskCalculationParameters(manifest.riskCalculationParametersId)

return ExposureConfiguration.ExposureConfigurationBuilder()
.setDurationAtAttenuationThresholds(*riskCalculationParameters.

durationAtAttenuationThresholds.toIntArray())
.setMinimumRiskScore(riskCalculationParameters.minimumRiskScore)
.setTransmissionRiskScores(*riskCalculationParameters.

transmissionRiskScores.toIntArray())
.setDurationScores(*riskCalculationParameters.durationScores.toIntArray())
.setAttenuationScores(*riskCalculationParameters.attenuationScores.

toIntArray())
.setDaysSinceLastExposureScores(*riskCalculationParameters.

daysSinceLastExposureScores.toIntArray())
.build()

}

This data is in turn used in the processExposureKeySets function in order to calculate a possible exposure based on the
given values.

Ŷ.Ż. Fź - Removal of old data

Requirement FŻ: The application removes contact codes that are older then Ŵŷ days.

Conclusion A minor inconsistency is that the application does not specify this timeframe, however, the Ŵŷ

day deletion is implicit in the use of the underlying Google Apple Exposure Notification (GAEN).

Ŷ.Ż.ų. iOS
The ENManager documentation
(https://developer.apple.com/documentation/exposurenotification/enmanager) lists the following
methods/fields related to exposures:

• detectExposures
• getExposureWindows
• ENGetExposureWindowsHandler

• getUserTraveled
• ENGetUserTraveledHandler
• getExposureInfo (deprecated)

There are calls to detectExposure and to the deprecated method getExposureInfo, but the code does not refer to the
other methods or fields. The GAEN library will only give information about exposed contact codes to the app. For that reason,

the method needs a list of downloaded diagnostic keys (i.e., the list of exposure TEKs and exposure criteria. To be compatible

with iOS ŴŶ.Ÿ or lower, the GAEN library on iOS has a call limit of ŴŸ times per day. But this value can be overwritten:

ENCore/App/Features/DeveloperMenu/DeveloperMenuViewController.swift
414: return ProcessExposureKeySetsDataOperationOverrides.
respectMaximumDailyKeySets ? "15" : "unlimited"

© Secura BV, ŵųŵų ŵŷ of ŸŻ

https://developer.apple.com/documentation/exposurenotification/enmanager

CONFIDENTIAL

Ŷ.Ż.ų.ų. Calling detectExposures

The ProcessExposureKeySetsDataOperation’s method detectExposures calls the GAEN library’s method of the
same name.

If the flag fakeProcessKeySets is set, will just mark all keys as processed. In the real processing, it will first look for the
local files of a keyset. For this, the signature and the binary files must exist. These file URLs are found via the methods

signatureFileUrl and binaryFileUrl respectively. These are the downloaded keys against which the GAEN library
will check exposures.

The call will return exposure results, which the app will transform into ExposureKeySetDetectionResult objects, and
later into ExposureDetectionResult objects. These objects contain the following fields:

private struct ExposureKeySetDetectionResult {
let keySetHolder: ExposureKeySetHolder
let processDate: Date?
let isValid: Bool

}

private struct ExposureDetectionResult {
let keySetDetectionResults: [ExposureKeySetDetectionResult]
let exposureSummary: ExposureDetectionSummary?
let exposureReport: ExposureReport?

}

An ExposureKeySetHolder contains:

struct ExposureKeySetHolder: Codable {
let identifier: String
let signatureFilename: String
let binaryFilename: String
let processDate: Date?
let creationDate: Date

var processed: Bool { processDate != nil }
}

None of these data structures contain contact codes. The results of the exposure detection will only show with which exposure

TEK there has been contact.

Ŷ.Ż.ų.Ŵ. Calling getExposureInfo

According to the iOS GAEN API, getExposureInfo returns an ENExposureDetectionSummaryŸ. This object contains
details about the exposures, but does not appear to list any of the contact codes. The field metadata is, according to the API
documentation, not used.

Ŷ.Ż.ų.ŵ. Persistence of Exposure Results

In the class ProcessExposureKeySetsDataOperation, described in section ŷ.ż.Ŵ.Ŵ, the execute method calls the
methods persist and persistResult, which stores the exposure results. The former stores the exposure report, while
the latter updates the currently stored keys with the results.

ŸSource: https://developer.apple.com/documentation/exposurenotification/enexposuredetectionsummary

© Secura BV, ŵųŵų ŵŸ of ŸŻ

https://developer.apple.com/documentation/exposurenotification/enexposuredetectionsummary

CONFIDENTIAL

Ŷ.Ż.Ŵ. Removal of exposure TEKs
In the interpretation of contact codes, being the exposure TEKs that the app downloads, the app does indeed store these.

There is a method removeBlobs that removes the binary files and signatures for keys that are processed or for which the
exposure check failed. After the app stored the exposure report, it calls this method. There is no explicit time period in this

method.

In RequestExposureKeySetsDataOperation’s method createKeySetHolders, a file with exposed keys is
removed if it has the same name as a newly downloaded file.

Ŷ.Ż.ŵ. Android

The application uses Google Exposure API for the purpose of contacts tracingŹ. The resetExposures function removes
previously stored contact codes:

nl-covid19 -notification -app-android/app/src/main/java/nl/rijksoverheid/en/
ExposureNotificationsRepository.kt
[...]

fun resetExposures() {
preferences.edit {

// Use putString instead of remove, otherwise encrypted shared
preferences don't call

// an associated shared preferences listener.
putString(KEY_LAST_TOKEN_ID , null)
putString(KEY_LAST_TOKEN_EXPOSURE_DATE , null)

}
}

The resetExposures function is called by the function removeExposure:

nl-covid19 -notification -app-android/app/src/main/java/nl/rijksoverheid/en/status/
StatusViewModel.kt
[...]

fun removeExposure() {
exposureNotificationsRepository.resetExposures()

}

[...]

The removeExposure function is called by another function
showRemoveNotificationConfirmationDialog:

nl-covid19 -notification -app-android/app/src/main/java/nl/rijksoverheid/en/status/
StatusFragment.kt
[...]

private fun showRemoveNotificationConfirmationDialog() {
findNavController().navigate(StatusFragmentDirections.

actionRemoveExposedMessage())
findNavController().currentBackStackEntry?.savedStateHandle?.getLiveData <

Boolean >(

Źhttps://github.com/google/exposure-notifications-android

© Secura BV, ŵųŵų ŵŹ of ŸŻ

CONFIDENTIAL

RemoveExposedMessageDialogFragment.REMOVE_EXPOSED_MESSAGE_RESULT
)?.observe(viewLifecycleOwner) {

if (it) {
statusViewModel.removeExposure()

}
}

}
[...]

However, no indication of automatic removal after Ŵŷ days were found in the application code. The Ŵŷ days periods is handled

by the GAEN API and is not controlled by the application.ź. The GAEN API allows to upload history of contacts code not older

than Ŵŷ days by using getTemporaryExposureKeyHistory function. Override of this function was only found in the test
code:

nl-covid19 -notification -app-android/en-api/src/test/java/nl/rijksoverheid/en/enapi/
nearby/NearbyExposureNotificationApiTest.kt
[...]
334: override fun getTemporaryExposureKeyHistory(): Task<List<
TemporaryExposureKey >> =
362: override fun getTemporaryExposureKeyHistory(): Task<List<
TemporaryExposureKey >> =
381: override fun getTemporaryExposureKeyHistory(): Task<List<
TemporaryExposureKey >> =
551: override fun getTemporaryExposureKeyHistory(): Task<List<
TemporaryExposureKey >> =
[...]

Another function provideDiagnosisKeys is used for storing contact code on the device. And according to the
documentation only codes not older than Ŵŷ days will be stored. Override of this function was found in the test code:

nl-covid19 -notification -app-android/app/src/test/java/nl/rijksoverheid/en/
ExposureNotificationsRepositoryTest.kt

[...]
175: override suspend fun provideDiagnosisKeys(
232: override suspend fun provideDiagnosisKeys(
286: override suspend fun provideDiagnosisKeys(
332: override suspend fun provideDiagnosisKeys(
381: override suspend fun provideDiagnosisKeys(
434: override suspend fun provideDiagnosisKeys(
490: override suspend fun provideDiagnosisKeys(
555: override suspend fun provideDiagnosisKeys(
[...]

nl-covid19 -notification -app-android/en-api/src/test/java/nl/rijksoverheid/en/enapi/
nearby/NearbyExposureNotificationApiTest.kt

[...]
394: fun `provideDiagnosisKeys without error removes files and returns Success
`() = runBlocking {
400: override fun provideDiagnosisKeys(

źhttps://developers.google.com/android/exposure-notifications/exposure-notifications-api

© Secura BV, ŵųŵų ŵź of ŸŻ

CONFIDENTIAL

413: val status = api.provideDiagnosisKeys(
425: fun `provideDiagnosisKeys with generic error removes files and returns
UnknownError `() =
433: override fun provideDiagnosisKeys(
442: val status = api.provideDiagnosisKeys(
458: fun `provideDiagnosisKeys with disk io removes files and returns
FailedDiskIo `() =
466: override fun provideDiagnosisKeys(
475: val status = api.provideDiagnosisKeys(
533: override fun provideDiagnosisKeys(
[...]

But also in the production code:

nl-covid19 -notification -app-android/en-api/src/main/java/nl/rijksoverheid/en/enapi/
NearbyExposureNotificationApi.kt
[...]

override suspend fun provideDiagnosisKeys(
files: List<File>,
configuration: ExposureConfiguration ,
token: String

) = suspendCoroutine <DiagnosisKeysResult > { c ->
client.provideDiagnosisKeys(files, configuration , token).

addOnSuccessListener {
c.resume(DiagnosisKeysResult.Success)

}.addOnFailureListener {
Timber.e(it, "Error while providing diagnosis keys")
val apiException = it as? ApiException
c.resume(

when (apiException?.statusCode) {
ExposureNotificationStatusCodes.FAILED_DISK_IO ->

DiagnosisKeysResult.FailedDiskIo
else -> DiagnosisKeysResult.UnknownError(it)

}
)

}.addOnCompleteListener {
files.forEach { it.delete() }

}
}

[...]

No code related to the adjusting time windows was found. The provideDiagnosisKeys function is called by function
processExposureKeySets:

nl-covid19 -notification -app-android/app/src/main/java/nl/rijksoverheid/en/
ExposureNotificationsRepository.kt

[...]
/**
* Downloads new exposure key sets from the server and processes them
*/

@VisibleForTesting

© Secura BV, ŵųŵų ŵŻ of ŸŻ

CONFIDENTIAL

internal suspend fun processExposureKeySets(manifest: Manifest):
ProcessExposureKeysResult {

[...]
}

val configuration = try {
getConfigurationFromManifest(manifest)

} catch (ex: IOException) {
Timber.e(ex, "Error fetching configuration")
return ProcessExposureKeysResult.Error(ex)

}

Timber.d("Processing ${validFiles.size} files")

preferences.edit {
putInt(KEY_MIN_RISK_SCORE , configuration.minimumRiskScore)

}

val result = exposureNotificationsApi.provideDiagnosisKeys(
validFiles.map { it.file\!\! },
configuration ,
createToken()

)
[...]

The configuration for the GAEN API is retrieved from the manifest by calling getConfigurationFromManifest
function:

private suspend fun getConfigurationFromManifest(manifest: Manifest):
ExposureConfiguration {

val riskCalculationParameters =
api.getRiskCalculationParameters(manifest.riskCalculationParametersId)

return ExposureConfiguration.ExposureConfigurationBuilder()
.setDurationAtAttenuationThresholds(*riskCalculationParameters.

durationAtAttenuationThresholds.toIntArray())
.setMinimumRiskScore(riskCalculationParameters.minimumRiskScore)
.setTransmissionRiskScores(*riskCalculationParameters.

transmissionRiskScores.toIntArray())
.setDurationScores(*riskCalculationParameters.durationScores.toIntArray

())
.setAttenuationScores(*riskCalculationParameters.attenuationScores.

toIntArray())
.setDaysSinceLastExposureScores(*riskCalculationParameters.

daysSinceLastExposureScores.toIntArray())
.build()

}

No settings regarding changing the time window is present in the configuration.

Ŷ.Ż.Ŷ. Conclusion
The applications do not offer a centralised functionality to configure a expiry duration for keys. However, implicitly the GAEN

functionality of providing keys up to Ŵŷ days old is being used.

© Secura BV, ŵųŵų ŵż of ŸŻ

CONFIDENTIAL

Ŷ.ųŲ. FŻ - Collection of contact codes

Requirement Fż: The application collects periodically and incrementally contact codes from recent exposures

from the server.

Conclusion Secura finds no inconsistencies to this requirement.

Ŷ.ųŲ.ų. iOS
The downloaded exposure TEKs are stored via createKeySetHolders in
RequestExposureKeySetsDataOperation. The method requestExposureKeySetsOperation in the
ExposureDataOperationProvider class invokes this, and is itself called from ExposureDataController’s
method fetchAndStoreExposureKeySets. This in turn is called from fetchAndProcessExposureKeySets,
which only the ExposureController calls, in a method with the same name. That again is called from
updateWhenRequired in the same class. Section ŷ.Ź.ų.Ź on page ŵŴ discusses that the app schedules a background task
that invokes this, which shows that it does download the codes periodically.

fetchAndProcessExposureKeySets requests the application configuration first, feeds that to
fetchAndStoreExposureKeySets which takes the exposureKeySetsIdentifiers from the manifest and calls

requestExposureKeySetsOperation to it. That method applies the operation with the same name to it, and in its
executemethod it removes any keyset identifiers of keysets that are already downloaded or processed. This means that the
download of keysets is also incremental.

Ŷ.ųŲ.Ŵ. Android
The Android functionality is similar. Secura sees no issues with this functionality.

Ŷ.ųų. FųŲ - Central configuration

Requirement FŴų: The frequency of collecting data from the server can be centrally configured.

Conclusion Secura finds no inconsistencies to this requirement.

Both the Android and iOS app contact the server to get the manifest, application configuration, and exposed keys. Because it is

not clear what is meant exactly by “the app checking with the server”, we assume it to be all of these operations. Also the

requirement does not state who should be able to configure and modify this, but we assume this must be the server.

Ŷ.ųų.ų. iOS
All requests that the app makes over the network, are defined in the NetworkManager class. Related to this requirement,
the class has four methods:

getManifest
getAppConfig
getRiskCalculationParameters
getExposureKeySet

The NetworkController calls these from:

var applicationManifest
func applicationConfiguration
func exposureRiskConfigurationParameters

© Secura BV, ŵųŵų Ŷų of ŸŻ

CONFIDENTIAL

func fetchExposureKeySet

For each of these, there is an operation that calls it:

RequestManifestExposureDataOperation
RequestExposureConfigurationDataOperation
RequestExposureKeySetsDataOperation
RequestAppConfigurationDataOperation

RequestManifestExposureDataOperation’s execute method calls retrieveManifestUpdateFrequency and
uses this value to check if the stored manifest is not older than a certain time. If the manifest is still valid, it will not update it.

retrieveManifestUpdateFrequency finds this value in the application configuration.

The RequestExposureKeySetsDataOperation is called from The ExposureController’s method updateWhenRequired.

This is run periodically, to a configurable update interval. The method getAppRefreshInterval of the
ExposureDataController retrieves this value from the application configuration.

The RequestAppConfigurationDataOperation is called from requestAppConfigurationOperation, which
in turn is called from requestApplicationConfiguration, which the ExposureDataController calls in many
places.

The operation compares the stored application configuration identifier with the one it retrieved from the manifest, and gets

the new application configuration from the server only if the identifier differs. The application configuration update interval is

tied to the manifest update interval.

The same holds for the RequestExposureConfigurationDataOperation operation.

Ŷ.ųų.Ŵ. Android
Within the Android application, whenever a configuration value is requested, the application checks whether a current version

is cached:

suspend fun getCachedConfigOrDefault(): AppConfig = getConfigOrDefault {
cdnService.getAppConfig(

cdnService.getManifest("only-if-cached,max-stale=${Int.MAX_VALUE}").
appConfigId ,

"only-if-cached,max-stale=${Int.MAX_VALUE}"
)

}

When this is not the case, a new version will be requested.

Ŷ.ųŴ. Fųų - Automatic exposure detection based on configuration

Requirement FŴŴ: The application warns a user automatically if there was a possible exposure, based on relevant

contact (ie ŴŸ minutes within Ŵ,Ÿ meters) with a confirmed infected person.

Conclusion Secura finds no inconsistencies to this requirement.

Ŷ.ųŴ.ų. iOS
Detection of exposures is described in section ŷ.ż on page ŵŷ. Before persisting the report, the class

ProcessExposureKeySetsDataOperation calls createReportAndTriggerNotification, which according to
its name, creates the report and triggers a notification.

© Secura BV, ŵųŵų ŶŴ of ŸŻ

CONFIDENTIAL

It calls getExposureInformations, which creates the exposure notifications and feeds them to the queue

DispatchQueue.main.

Ŷ.ųŴ.Ŵ. Android
On Android the ExposureNotificationReceiver.kt registers the following Broadcast Receiver:

class ExposureNotificationReceiver : BroadcastReceiver() {
override fun onReceive(context: Context, intent: Intent) {

if (intent.action == ExposureNotificationClient.
ACTION_EXPOSURE_STATE_UPDATED) {

val token = intent.getStringExtra(ExposureNotificationClient.
EXTRA_TOKEN)

if (token != null) {
ExposureNotificationJob.showNotification(context, token)

} else {
Timber.e("No token")

}
}

}
}

This receiver catches the ACTION_EXPOSURE_STATE_UPDATED send by the GAEN when a new exposure is
detected.

Ŷ.ųŵ. Qųŵ - Warnings on communication errors

Requirement QŴŶ: When the application is unable to communicate because of networking issues, the user will

be notified.

Conclusion Secura finds no inconsistencies to this requirement.

Ŷ.ųŵ.ų. iOS
All network related methods in the NetworkManager expect calls to the network to fail, and return the failure on the stream
that made the calls.

To specifically detect network availability, the NetworkController implements two methods:
startObservingNetworkReachability and stopObservingNetworkReachability. It uses the Reachability
libraryŻ for this. The app sets two handlers to update the network status stream:

reachability?.whenReachable = { [weak self] status in
self?.mutableNetworkStatusStream.update(isReachable: status.connection != .

unavailable)
}
reachability?.whenUnreachable = { [weak self] status in

self?.mutableNetworkStatusStream.update(isReachable: !(status.connection == .
unavailable))
}

ŻSource: https://github.com/ashleymills/Reachability.swift

© Secura BV, ŵųŵų Ŷŵ of ŸŻ

https://github.com/ashleymills/Reachability.swift

CONFIDENTIAL

The RootRouter calls these methods from the lifecycle hooks didEnterForeground and
didEnterBackground.

The ExposureController’s method postExposureManagerActivation uses the NetworkStatusStream to
check if it can do updates.

The app can give warnings and messages to the user from events via the UserNotificationCenter. The code contains a
number of methods such as notifyUser that will invoke the UserNotificationCenter to send a message to the user.

The BackgroundController has the method notifyUserENFrameworkDisabled. It is called from the method

handleENStatusCheck in the same class.

The method handleUpdate calls the ExposureController’s method notifyUserIfRequired. This is the only call
to that method.

The ExposureController also defines the method notifyUserAppNeedsUpdate. It is called from
notifyUserIfRequired in the same class.

The class ProcessPendingLabConfirmationUploadRequestsDataOperation defines notifyUser. It is called
from its executemethod.

If any of these methods encounters a network error, it will send a notification. All functionality that needs the network is

covered by the above.

Ŷ.ųŵ.Ŵ. Android
The application shows an error message when the time-out reached during the network communication:

© Secura BV, ŵųŵų ŶŶ of ŸŻ

CONFIDENTIAL

Figure ŷ.ŵ: Communication error message

Additionally, the application generates an error message when the registration was unsuccessful:

nl-covid19 -notification -app-android/app/src/main/java/nl/rijksoverheid/en/labtest/
LabTestViewModel.kt
[...]

class LabTestViewModel(private val labTestRepository: LabTestRepository) :
ViewModel() {

sealed class KeyState {
object Loading : KeyState()
data class Success(val key: String) : KeyState()
object Error : KeyState()

}

val uploadResult: LiveData <Event<UploadResult >> = MutableLiveData()

private var usedKey: String? = null

private val refresh = MutableLiveData <Unit>()
val keyState: LiveData <KeyState > = refresh.switchMap {

liveData {
emit(Loading)
val result = labTestRepository.registerForUpload()

© Secura BV, ŵųŵų Ŷŷ of ŸŻ

CONFIDENTIAL

if (result is RegistrationResult.Success) {
usedKey = result.code
emit(Success(result.code))

} else {
emit(Error)

}
}

}
[...]

The function registerForUpload does not show any specific handling of the communication errors:

suspend fun registerForUpload(): RegistrationResult {
return withContext(Dispatchers.IO) {

val code = getCachedRegistrationCode()
if (code != null) {

return@withContext RegistrationResult.Success(code)
}
try {

val config = appConfigManager.getCachedConfigOrDefault()
val result = api.register(RegistrationRequest(), config.requestSize

)
storeResult(result)
RegistrationResult.Success(result.labConfirmationId)

} catch (ex: HttpException) {
Timber.e(ex, "Error registering")
RegistrationResult.UnknownError

} catch (ex: IOException) {
Timber.e(ex, "Error registering")
RegistrationResult.UnknownError

}
}

}

Testing in practice shows that warnings are shown when no communication is possible.

Ŷ.ųŶ. QųŶ - Warning on loss of required technology

Requirement When the application is unable to communicate because of loss of required technology, the user

will be notified.

Conclusion Secura finds no inconsistencies to this requirement.

Ŷ.ųŶ.ų. iOS
The collection of RPIs, done by the GAEN library however, requires Bluetooth. The app has a

BluetoothSettingsListener, but only uses it during onboarding.

Because the GAEN library collects the RPIs, it would be responsible for detecting errors. Considering that the GAEN code is out

of scope of this investigation, we cannot determine whether the library notifies the app of any errors. The app also actively

checks the GAEN library status every ŵŷ hours via the method handleENStatusCheck. If the library is not working, it will
report this to the user.

© Secura BV, ŵųŵų ŶŸ of ŸŻ

CONFIDENTIAL

Ŷ.ųŶ.Ŵ. Android
On Android, the Google Exposure Notification service will show a system notification if enabled and Bluetooth is disabled.

Therefore this is outside the scope of the CoronaMelder application.

Ŷ.ųŷ. QŴŴ - De-anonymization

Requirement Qŵŵ: Data processed by the application can not be traced to an individual person.

Conclusion There are two ways how the backend can potentially identify users, both should be covered

as discussed in the DPIA. However, since the backend was not in scope for this assessment, no

assurances can be given. Additionally, time based observation might allow to distinguish real

from decoy traffic.

The design takes care of this, under the assumption that the GAEN library ensures data cannot be tied to an individual. The

only data that could be linked to an individual, is the lab confirmation code that a user supplies to the health provider. The

health provider does not have access to the uploaded TEKs on the server and is bound by its professional oath and the law not

to disclose personal information.

The requests that the app sends over the network are implemented in the NetworkManager class. The HTTP requests
constructed there contain the minimum amount of information that should be sent. Even the HTTP headers are kept to a

minimum.

Ŷ.ųŷ.ų. Anonymity: unlinkability of TEKs to individuals
The daily RPIs are generated on the end-user device, using the TEKs as a seed. Both the RPIs and TEKs are associated with a

single device/person and as such pseudonymous identifiers rather than anonymous values. The RPIs and TEKs are intended to

not be linkable to individual persons.

Anonymity is by definitionż bound by three elements:

• a subject (here: a person who uses the app)

• an Item of Interest / IOI (here: an RPI or TEK)

• an adversary (depends on the threat model — open to debate)

The subject can be said to be sufficiently anonymous from the adversary’s perspective with regard to an IOI, if the adversary is

unable to correctly identify a link between the IOI and the subject (unlinkability). Whether or not that is possible depends on

the information position, access position, and capabilities attributed to the adversary.

For the notification app, which once deployed will be considered vital infrastructure, the scenario of an adversary who is able

to observe the backend — such as a human operator or software used for performance and reliability monitoring on the

backend —may need to be considered. In other words: what if, from a user’s perspective, the backend itself is considered

untrusted?

Communication between the app and the backend takes place via the public internet, without mediation. When TEKs are sent,

the user’s real IP address is included as part of the communication. This communication may take place multiple times per

day.

An IP address is identifying information, as is also recognised in the DPIAŴų in the context of traffic analysis. If a device is

connected via the user’s private Wi-Fi connection at the time of this communication, the domestic IP address is disclosed to

żSee: “A terminology for talking about privacy by data minimization: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity, and Identity

Management”, Pfitzmann and Hansen, version ų.Ŷŷ, August ŵųŴų: https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.3
4.pdf
ŴųDPIA: https://github.com/minvws/nl-covid19-notification-app-coordination/tree/master/privacy

© Secura BV, ŵųŵų ŶŹ of ŸŻ

https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://github.com/minvws/nl-covid19-notification-app-coordination/tree/master/privacy

CONFIDENTIAL

the backend. This is a strong identifier that, similar to a phone number, can be expected to be present in external databasesŴŴ

that also contain the user’s real name and address.

The backend — which itself is out of scope of this assessment — can perform IP stripping, as is shown the ‘Backend overview’

architecture diagramŴŵ If the IP stripping takes place after TLS offloading, the combination of the user’s IP address and TEKs is

accessible, at least temporarily while a request is being processed.

One way to prevent this is to ensure the app does not communicate to the backend directly, but that the communication is

brokered via an anonymising network, such as a custom/private onion routing network operated by entities who are

independent from the government and the infrastructure hosting party. TLS encryption will still ensure confidentiality and

integrity of the communication between the user and the backend.

This is beyond the scope of the assessment, hence no validation on the backend was performed.

REMARK Ŵ ŵųųŹųŸŵŷ-RŴ

Topic The backend can potentially link TEKs an individual person

Applies to CoronaMelder application

Description The backend — which itself is out of scope of this assessment — can perform IP stripping, as

is shown the ‘Backend overview’ architecture diagramŴŶ If the IP stripping takes place after TLS

offloading, the combination of the user’s IP address and TEKs is accessible, at least temporarily

while a request is being processed. This finding has not been verified on the backend since that

was out of scope for this assessment. For more information see section ŷ.ŴŸ.Ŵ on the preceding

page

Recommendation One way to prevent this is to ensure the app does not communicate to the backend directly,

but that the communication is brokered via an anonymising network, see the DPIA for more

information. TLS encryption will still ensure confidentiality and integrity of the communication

between the user and the backend.

Ŷ.ųŷ.ų.ų. Tracking of users

Bucket id’s and confirmation keys have an expiration time. In the code of the Android app this was observed in the

LabTestRepository class defined in
./app/src/main/java/nl/rijksoverheid/en/labtest/LabTestRepository.kt :

private fun clearKeyDataIfExpired() {
val expiration = preferences.getLong(KEY_REGISTRATION_EXPIRATION, 0)
if (expiration == 0L || expiration < clock.millis()) {

clearKeyData()
}

}

private fun clearKeyData() {
preferences.edit {

remove(KEY_CONFIRMATION_KEY)
remove(KEY_REGISTRATION_EXPIRATION)
remove(KEY_LAB_CONFIRMATION_ID)
remove(KEY_BUCKET_ID)
remove(KEY_PENDING_KEYS)
remove(KEY_UPLOAD_DIAGNOSTIC_KEYS)

ŴŴFor instance a database of a large e-commerce website, government databases that also include person names and addresses.
ŴŵSee https://github.com/minvws/nl-covid19-notification-app-coordination/blob/master/architecture/.

© Secura BV, ŵųŵų Ŷź of ŸŻ

CONFIDENTIAL

remove(KEY_DID_UPLOAD)
}

}

suspend fun uploadDiagnosticKeysIfPending(): UploadDiagnosticKeysResult {
[...]
clearKeyDataIfExpired()

[...]
}

Here, every time uploadDiagnosticKeysIfPending() is invoked, the clearKeyDataIfExpired() is invoked and
removes the keys if the expiration time has been reached. The expiration time is obtained via a configuration setting

referenced via KEY_REGISTRATION_EXPIRATION (which refers to the preference option
registration_expiration). In the version of the source code that was inspected, no value was found for this
parameter. It is not clear what value will be used in the production app.

In the same class file, the method uploadKeys() shows the use of the confirmation key to create an HmacSecret object
(note: the latter class is defined in the SignedBodyInterceptor as a simple placeholder:
class HmacSecret(val secret: ByteArray)):

private suspend fun uploadKeys(
requestedKeys: List<TemporaryExposureKey >,
bucketId: String,
confirmationKey: ByteArray

) {
val config = appConfigManager.getCachedConfigOrDefault()
val request = PostKeysRequest(requestedKeys.map {

nl.rijksoverheid.en.api.model.TemporaryExposureKey(
it.keyData,
it.rollingStartIntervalNumber ,
it.rollingPeriod

)
}, bucketId)
api.postKeys(request, HmacSecret(confirmationKey), config.requestSize)

}

If the value of confirmationKey— or of a bucket id for that matter — remains constant over multiple uploads before the

expiration triggers, an attacker who has access to the backend (prior to IP addresses being stripped) may be able to infer

uniquely identifying patterns of times and IP addresses linked to a known bucket id or confirmation key. For instance, a user’s

device may be connected to a private home internet connection in the morning and evening, and be connected to a school or

employer Wi-Fi network during the day. If this pattern is sufficiently unique, an attacker who has access to the backend may be

able to infer links between a user’s past and future confirmation keys by matching patterns of changes in IP addresses. This

may enable linkability where unlinkability is desired from a privacy perspective.

As said, whether or not this threat is sufficiently mitigated by measures documented in the DPIA, is beyond the scope of this

assessment.

© Secura BV, ŵųŵų ŶŻ of ŸŻ

CONFIDENTIAL

REMARK ŵ ŵųųŹųŸŵŷ-Rŵ

Topic The backend can potentially link confirmation keys or bucket id’s to an individual

Applies to CoronaMelder application

Description An attacker who has access to the backend (prior to IP addresses being stripped) may be able

to infer uniquely identifying patterns of times and IP addresses linked to a known bucket id or

confirmation key. This finding has not been verified on the backend since that was out of scope

for this assessment. For more information see section ŷ.ŴŸ.Ŵ.Ŵ on page Ŷź.

Recommendation One way to prevent this is to ensure the app does not communicate to the backend directly,

but that the communication is brokered via an anonymising network, such as a custom/private

onion routing network operated by entities who are independent from the government and the

infrastructure hosting party. TLS encryption will still ensure confidentiality and integrity of the

communication between the user and the backend.

Ŷ.ųŷ.Ŵ. Decoy uploads
In order to thwart traffic analysis, the application sends out decoy messages to stopkeys instead of postkeys. Secura
found no issues in the creation of these decoy requests that could lead to a direct identification of decoy versus normal traffic.

However, the documentation on https://github.com/minvws/nl-covid19-notification-app-
coordination/blob/master/architecture/Traffic Analysis Mitigation With Decoys.md states
the following:

”Note: the above algorithm will also generate decoy traffic outside Health Authority office hours. Any traffic

outside office hours can be distinguished as decoy traffic. However, this is not a privacy issue. Any upload during

office hours is not distinguishable as real or decoy traffic.”

However, both the iOS and Android application are limited to sending decoy traffic between ź:ųų and Ŵż:ųų, contradicting this

statement. Essentially, allowing an observer to know that data send outside these hours is not decoy traffic.

REMARK Ŷ ŵųųŹųŸŵŷ-RŶ

Topic Decoy traffic is only sent during office hours.

Applies to CoronaMelder application

Description Decoys are limited to be send during office hours (ź:ųų to Ŵż:ųų). Any traffic observed outside

this time window must be real traffic. This violates the description in the documentation which

states that: ”Note: the above algorithm will also generate decoy traffic outside Health Authority

office hours.”

Recommendation Send decoy traffic at randommoments during the entire day to thwart attackers who can observe

network traffic.

Ŷ.ųŸ. QŴŵ - No location Data

Requirement QŵŶ: The application does not use location data.

Conclusion Secura finds no inconsistencies to this requirement.

The following research questions were applicable to this functionality:

© Secura BV, ŵųŵų Ŷż of ŸŻ

https://github.com/minvws/nl-covid19-notification-app-coordination/blob/master/architecture/Traffic Analysis Mitigation With Decoys.md
https://github.com/minvws/nl-covid19-notification-app-coordination/blob/master/architecture/Traffic Analysis Mitigation With Decoys.md

CONFIDENTIAL

Ŷ.ųŸ.ų. iOS

The file EN/Recources/Info.plist contained the following information:

Figure ŷ.Ŷ: Example of the properties file EN/Recources/Info.plist

The following permission was defined in the file:

• Bluetooth

A check was made in the iOS emulater, which confirmed that the Bluetooth and Health permissions were active.

Figure ŷ.ŷ: Bluetooth permission
Figure ŷ.Ÿ: Location Services permission

Ŷ.ųŸ.Ŵ. Android
The application requires the Bluetooth permission, but no access to the precise GPS location is needed:

© Secura BV, ŵųŵų ŷų of ŸŻ

CONFIDENTIAL

<manifest xmlns:android="http://schemas.android.com/apk/res/android" android:
versionCode="1" android:versionName="0.4.1-acc" android:compileSdkVersion="29"
android:compileSdkVersionCodename="10" package="nl.rijksoverheid.en"
platformBuildVersionCode="29" platformBuildVersionName="10">

<uses-sdk android:minSdkVersion="23" android:targetSdkVersion="29"/>
<uses-feature android:name="android.hardware.bluetooth_le" android:required="

true"/>
<uses-feature android:name="android.hardware.bluetooth"/>
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.BLUETOOTH"/>
<uses-permission android:name="android.permission.REORDER_TASKS"/>
<uses-permission android:name="android.permission.FOREGROUND_SERVICE"/>
<uses-permission android:name="android.permission.WAKE_LOCK"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

[...]

The application checks if Bluetooth ans Location services are enabled:

nl-covid19 -notification -app-android/app/src/main/java/nl/rijksoverheid/en/
ExposureNotificationsRepository.kt
[...]

suspend fun getCurrentStatus(): StatusResult {
val result = exposureNotificationsApi.getStatus()
return if (result == StatusResult.Enabled) {

if (isBluetoothEnabled() && isLocationEnabled()) {
statusCache.updateCachedStatus(StatusCache.CachedStatus.ENABLED)
StatusResult.Enabled

} else {
statusCache.updateCachedStatus(StatusCache.CachedStatus.

INVALID_PRECONDITIONS)
StatusResult.InvalidPreconditions

}
} else {

if (result == StatusResult.Disabled) {
statusCache.updateCachedStatus(StatusCache.CachedStatus.DISABLED)

}
result

}
}

[...]

However, no code was found that requests current location of the device. Enabling location is required for the correct

functionality of the Google Exposure notification. Note that this requirement will be removed in future versions of the Google

Exposure Notification on Android ŴŴ.Ŵŷ

Ŵŷhttps://blog.google/inside-google/company-announcements/update-exposure-notifications/

© Secura BV, ŵųŵų ŷŴ of ŸŻ

CONFIDENTIAL

Ŷ.ųŹ. QŴŸ - Anonymous contact codes

Requirement QŵŹ: Contact codes are not based on personal information.

Conclusion Secura finds no inconsistencies to this requirement.

The GAEN ensures this functionality and is out of scope for this assessment.

Ŷ.ųź. QŴź - Use only after explicit consent

Requirement QŵŻ: Use of the application is only possible after explicit consent by the user.

Conclusion Secura finds no inconsistencies to this requirement.

Ŷ.ųź.ų. iOS
As mentioned in section ŷ.Ź on page ŴŻ, if the user has not given consent, the state on the exposure stream is

notAuthorized. None of the operations will work until the app is authorised.

The file OnboardingViewController.swiftŴŸ contains the class responsible for this functionality:

final class OnboardingViewController: NavigationController ,
OnboardingViewControllable , Logging {

[...]

// MARK: - OnboardingConsentListener

func consentClose() {
listener?.didCompleteOnboarding()

}

func consentRequest(step: OnboardingConsentStepIndex) {
router?.routeToConsent(withIndex: step.rawValue , animated: true)

}

[...]

private weak var listener: OnboardingListener?
private let onboardingConsentManager: OnboardingConsentManaging

}

Giving consent to start the app looks as follows:

ŴŸnl-covid19-notification-app-ios/Sources/ENCore/App/Features/Onboarding/OnboardingViewController.swift

© Secura BV, ŵųŵų ŷŵ of ŸŻ

CONFIDENTIAL

Figure ŷ.Ź: Example of the prompt that is shown after the ‘start app’ button is pressed

The conclusion is made that the CoronaMelder application asks for explicit consent before the app becomes active.

Ŷ.ųź.Ŵ. Android
Similar to iOS, the application can not be used without explicit consent. The following code in In MainActivity.kt
checks whether consent was given, or requests it from the user:

viewModel.notificationsResult.observe(this, EventObserver {
when (it) {

is ExposureNotificationsViewModel.NotificationsStatusResult.ConsentRequired ->
{

startIntentSenderForResult(
it.intent.intentSender ,
RC_REQUEST_CONSENT ,
null,
0,
0,
0

)
}

[...]
override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {

super.onActivityResult(requestCode , resultCode , data)
if (requestCode == RC_REQUEST_CONSENT && resultCode == Activity.RESULT_OK) {

viewModel.requestEnableNotifications()
}
// If user canceled the forced update, do not allow them to use the app
if (requestCode == RC_UPDATE_APP && resultCode != Activity.RESULT_OK) {

finish()
}

}

Ŷ.ųŻ. Generation, storage and transport of logging data.

Requirement Secure generation, storage and transmission of local log files

Conclusion Secura finds no inconsistencies to this requirement.

© Secura BV, ŵųŵų ŷŶ of ŸŻ

CONFIDENTIAL

Both the logs of the iOS and Android application were inspected during use. Additionally, no sensitive logged information was

discovered outside of appropriate places. Additionally, no online upload of log information was present. For more information

on logging see section ŷ.Ŷ.Ŵ on page Ŵŵ.

Ŷ.ŴŲ. Protection of data in local storage

Requirement Secure local storage of data and secure deletion of contact codes

Conclusion Secura finds no inconsistencies to this requirement.

The local storage for both iOS and Android was inspected. No data was places here that was out of context or more sensitive

than necessary.

Ŷ.Ŵų. External libraries

Requirement Correct use of software libraries and library versions

Conclusion At the time of writing, a number of libraries were out of date. Specifically one OpenSSL library

used by the iOS application, which was released on Ŵų September ŵųŴż. Since its release, two

security bugs were made public that affect this version: CVE-ŵųŴż-ŴŸŸŴ and CVE-ŵųŵų-ŴżŹź. These

bugs do not affect the security of the CoronaMelder app, because the library is only used to

validate certificates and the bugs do not affect that process. It is nonetheless recommended to

upgrade to the most current version, as a general best practice.

Both iOS and Android applications make use of a number of external libraries. While these are out of scope for the assessment,

Secura has assessed the versions that are in use for publicly known security vulnerabilities.

Ŷ.Ŵų.ų. iOS
The iOS version on the app CoronaMelder application makes use of the following third party software libraries

(Cocoapods):

• CocoaLumberjack version Ŷ.Ź.Ŵ (CocoaLumberjack is a fast and simple, yet powerful and flexible logging framework for

Mac and iOS.)- BSD-Ŷ-Clause licenseŴŹ

• Lottie version Ŷ.ŴŻ (Lottie is a mobile library for Android and iOS that natively renders vector based animations and art in

realtime with minimal code.)-Apache-ŵ.ų licenseŴź -

• Reachability version Ÿ.ų.ų. - BSD license(This is a drop-in replacement for Apple’s Reachability class. It is ARC-compatible,

and it uses the new GCD methods to notify of network interface changes.)ŴŻ Recent version Ÿ.ų.ų

• SnapKit version Ÿ.ų.ų (SnapKit is a DSL to make Auto Layout easy on both iOS and OS X) - MIT licenseŴż

• SnapshotTesting version Ŵ.ź.ŵ (Delightful Swift snapshot testing) - MIT licenseŵų

• ZipFoundation version ų.ż.ŴŴ (ZIP Foundation is a library to create, read and modify ZIP archive files)- MIT licenseŵŴ

A check of various internet sources showed that recent versions were in use by the app. No public vulnerabilities were

discovered in these libraries. The following framework was also included in the CoronaMelder application

ŴŹhttps://github.com/CocoaLumberjack/CocoaLumberjack
Ŵźhttps://cocoapods.org/pods/lottie-ios
ŴŻhttps://github.com/tonymillion/Reachability
Ŵżhttps://github.com/SnapKit/SnapKit
ŵųhttps://cocoapods.org/pods/SnapshotTesting
ŵŴhttps://cocoapods.org/pods/ZIPFoundationview

© Secura BV, ŵųŵų ŷŷ of ŸŻ

https://github.com/CocoaLumberjack/CocoaLumberjack
https://cocoapods.org/pods/lottie-ios
https://github.com/tonymillion/Reachability
https://github.com/SnapKit/SnapKit
https://cocoapods.org/pods/SnapshotTesting
https://cocoapods.org/pods/ZIPFoundationview

CONFIDENTIAL

• OpenSSL version Ŵ.Ŵ.ŴD - OpenSSL & SSLeay licenseŵŵ

OpenSSL version Ŵ.Ŵ.ŴD is used by the iOS application, which was released on Ŵų September ŵųŴż. Since its release, two security

bugs were made public that affect this version: CVE-ŵųŴż-ŴŸŸŴ and CVE-ŵųŵų-ŴżŹź. These bugs do not affect the security of the

CoronaMelder app, because the library is only used to validate certificates and the bugs do not affect that process. It is

nonetheless recommended to upgrade to the most current version, as a general best practice.

The conclusion is that the app uses recent versions of third party libraries. However, the version off the OpenSSL framework in

use of the CoronaMelder application was outdated and contained public vulnerabilities.

RISK NOTE ŵ ŵųųŹųŸŵŷ-Nŵ

Topic Outdated library used in iOS application: OpenSSL

Applies to CoronaMelder application (iOS)

Description OpenSSL version Ŵ.Ŵ.ŴD is used by the iOS application, which was released on Ŵų September ŵųŴż.

Since its release, two security bugs were made public that affect this version: CVE-ŵųŴż-ŴŸŸŴ

and CVE-ŵųŵų-ŴżŹź. These bugs do not affect the security of the CoronaMelder app, because

the library is only used to validate certificates and the bugs do not affect that process. It is

nonetheless recommended to upgrade to the most current version, as a general best practice.

For more information see the description in section ŷ.ŵŴ on the preceding page.

Risk When this library would be used for TLS connections, it would be possible to perform a denial of

service of a client under specific circumstances via the use of a publicly known vulnerability. In

order to prevent issues in future iterations when this library might be used in another way, it is

nonetheless recommended to upgrade to the most current version.

Recommendation Upgrade the software to a version without known vulnerabilities.

Reproduction See the description in ŷ.ŵŴ.Ŵ on the previous page Cehck the version of the OpenSSL framework

in use by the CoronaMelder application.

Metadata Likelihood: Low, Impact: Low, CVSS-Score:ų.ų CVSS:Ŷ.ų/AV:A/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:N

Ŷ.Ŵų.Ŵ. Android
The Android application makes use of a large number of dependencies. At the time of writing, the following libraries were not

up to date:

• "com.diffplug.spotless:spotless-plugin-gradle:3.30.0"
• "com.osacky.flank.gradle:fladle:0.10.2"
• 'com.squareup.moshi:moshi-kotlin:1.9.2'
• 'com.squareup.moshi:moshi-kotlin-codegen:1.9.2'
• 'com.squareup.okhttp3:logging-interceptor:4.8.0'
• "com.squareup.okhttp3:mockwebserver:4.8.0"
• 'com.squareup.okhttp3:okhttp:4.8.0'
• 'com.squareup.retrofit2:converter-moshi:2.8.1'
• 'org.bouncycastle:bcpkix-jdk15to18:1.65'
• 'org.bouncycastle:bcprov-jdk15to18:1.65'
• "org.mockito:mockito-android:3.4.4"

While not up-to-date, no public security vulnerabilities were discovered in these versions.

ŵŵhttps://www.openssl.org/news/openssl-1.1.1-notes.html

© Secura BV, ŵųŵų ŷŸ of ŸŻ

https://www.openssl.org/news/openssl-1.1.1-notes.html

CONFIDENTIAL

Ŷ.ŴŴ. Protection of data in transit

Requirement Protected communication with the backend servers and protection against Man-in-the-Middle

attacks

Conclusion Secura finds no inconsistencies to this requirement.

The following research questions are applicable to this section:

• Protection of communication with the backend servers.

• Protection against Man-in-the-Middle (MitM) attacks.

The logic for TLS pinning is implemented in

ENCore/Common/NetworkManager/NetworkManagerURLSessionDelegate.swift. It appears that the root
certificate within the chain is the single pinned certificate:

final class NetworkManagerURLSessionDelegate: NSObject , URLSessionDelegate {
[...]

func urlSession(_ session: URLSession , didReceive challenge:
URLAuthenticationChallenge , completionHandler: @escaping (URLSession.
AuthChallengeDisposition , URLCredential?) -> ()) {

guard let localSignature = configurationProvider.configuration.sslSignature
(forHost: challenge.protectionSpace.host),

challenge.protectionSpace.authenticationMethod ==
NSURLAuthenticationMethodServerTrust ,

let serverTrust = challenge.protectionSpace.serverTrust else {
// no pinning
completionHandler(.performDefaultHandling , nil)
return

}

let policies = [SecPolicyCreateSSL(true, challenge.protectionSpace.host as
CFString)]

SecTrustSetPolicies(serverTrust , policies as CFTypeRef)

let certificateCount = SecTrustGetCertificateCount(serverTrust)

guard
SecTrustEvaluateWithError(serverTrust , nil),
certificateCount > 0,
let serverCertificate = SecTrustGetCertificateAtIndex(serverTrust ,

certificateCount - 1), // get topmost certificate in chain
let signature = Certificate(certificate: serverCertificate).signature

else {
// invalid server trust
completionHandler(.cancelAuthenticationChallenge , nil)
return

}

guard localSignature == signature else {
// signatures don't match

© Secura BV, ŵųŵų ŷŹ of ŸŻ

CONFIDENTIAL

completionHandler(.cancelAuthenticationChallenge , nil)
return

}

// all good
completionHandler(.useCredential , URLCredential(trust: serverTrust))

}

[...]
}

The term ‘SSL signatures’ used in the code refers to SHA-ŵŸŹ hashes (‘fingerprints’) of certificates. Aside from this pinning hash,

standard certificate validation of the URLSession class is performed. This contains a check to match the certificate’s CN or
ANs with the hostname of the connection target.

Domain names and pinning hashes for the production environment are defined in

ENCore/Common/NetworkManager/NetworkManagerURLSessionDelegate.swift:

static let production = NetworkConfiguration(
name: "Production",
api: .init(

scheme: "https",
host: "coronamelder -api.nl",
port: nil,
path: ["v1"],
sslSignature: Certificate.SSL.apiSignature,
tokenParams: [:]

),
cdn: .init(

scheme: "https",
host: "productie.coronamelder -dist.nl",
port: nil,
path: ["v1"],
sslSignature: Certificate.SSL.cdnSignature,
tokenParams: [:]

)
)

Pinning constants are defined in ENCore/Common/Crypto/Certificates.swift:

extension Certificate {
struct SSL {

static let apiSignature: Certificate.Signature = "PE+
wuVq4swAy9DK4b1Nf4XLBhdD9OYZYN882GH+m9Cg="

static let cdnSignature: Certificate.Signature = "PE+
wuVq4swAy9DK4b1Nf4XLBhdD9OYZYN882GH+m9Cg="

}
}

After connecting to coronamelder-api.nl, it is noted that these fingerprints match the root certificate
Staat der Nederlanden Root CA - G3.

The root certificate will expire on Ŵŷ November ŵųŵŻ, after which the current version of the app would stop working. This

leaves sufficient time to update this key pin using an app update.

© Secura BV, ŵųŵų ŷź of ŸŻ

CONFIDENTIAL

Ŷ.ŴŴ.ų. Android

For the Android app, the build file api/build.gradle sets the FEATURE_SSL_PINNING to true:

defaultConfig {
minSdkVersion 23
targetSdkVersion 29
versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
consumerProguardFiles "consumer -rules.pro"

// encoded query string for public read access on the cdn
buildConfigField "String", "CDN_BASE_URL", "\"https://test.coronamelder -

dist.nl/\""
buildConfigField "String", "API_BASE_URL", "\"https://test.coronamelder -api

.nl/\""
buildConfigField "boolean", "FEATURE_RESPONSE_SIGNATURES", "true"
buildConfigField "boolean", "FEATURE_SSL_PINNING", "true"

}

This value is used in api/src/main/java/nl/rijksoverheid/en/api/services.kt:

private const val CDN_PIN = "sha256/Y9mvm0exBk1JoQ57f9Vm28jKo5lFm/woKcVxrYxu80o="
private const val API_PIN = "sha256/QiOJQAOogcXfa6sWPbI1wiGhjVS/dZlFgg5nDaguPzk="
[...]

internal fun createOkHttpClient(context: Context): OkHttpClient {
return okHttpClient ?: OkHttpClient.Builder()

// enable cache for config and resource bundles
.cache(Cache(File(context.cacheDir , "http"), 32 * 1024 * 1024))
.apply {

addNetworkInterceptor(CacheOverrideInterceptor())
addNetworkInterceptor(SignedResponseInterceptor())
addInterceptor(PaddedRequestInterceptor())
addInterceptor(SignedBodyInterceptor())
if (Timber.forest().isNotEmpty()) {

addInterceptor(HttpLoggingInterceptor(object :
HttpLoggingInterceptor.Logger {

override fun log(message: String) {
Timber.tag("OkHttpClient").d(message)

}
}).setLevel(HttpLoggingInterceptor.Level.BODY))

}
if (BuildConfig.FEATURE_SSL_PINNING) {

connectionSpecs(
listOf(

ConnectionSpec.MODERN_TLS
)

)
certificatePinner(

CertificatePinner.Builder()
.add(Uri.parse(BuildConfig.CDN_BASE_URL).host , CDN_PIN)

© Secura BV, ŵųŵų ŷŻ of ŸŻ

CONFIDENTIAL

.add(Uri.parse(BuildConfig.API_BASE_URL).host , API_PIN)

.build()
)

}
}.build().also { okHttpClient = it }

}

The result is behaviour that is identical to that of the iOS app.

Ŷ.Ŵŵ. TEK signing

Requirement TEK signatures should not be forgeable by an attacker

Conclusion Any leaf certificate recently issued by KPN as part of the PKIOverheid service would be accepted

by the application. If an attacker would manage to obtain a key corresponding to such a certificate,

they could forge TEK signatures. However, no exploitable scenario could be devised for this

weakness.

While not part of the original research questions, Secura discovered a potential vulnerability in the TEK signing functionality.

Section ŵ.Ż.ŵ of the architecture document Crypto Raamwerk.md ŵŶ details the two signatures set on sets of TEKs used for

diagnosis. The first signature follows the GAEN specification and is intended to be verified by the on-device Apple/Google API.

The second signature will is validated by the CoronaMelder app itself.

Section ŵ.Ż.Ź of said document states that the second signature, which uses a certificate chain and a CMS/PKCS#ź format,

should be validated based on its issuing CA and subject name.

The signature validation code is located in ENCore/Common/Crypto/SignatureValidator.swift:

final class SignatureValidator: SignatureValidating {
private let openssl = OpenSSL()

func validate(signature: Data, content: Data) -> Bool {
guard let rootCertificateData = validatedRootCertificateData() else {

return false
}

return openssl.validatePKCS7Signature(signature ,
contentData: content,
certificateData: rootCertificateData,
authorityKeyIdentifier:

SignatureConfiguration.authorityKeyIdentifier)
}

private func validatedRootCertificateData() -> Data? {
guard let certificateData = SignatureConfiguration.rootCertificateData else {

return nil
}

guard openssl.validateSerialNumber(SignatureConfiguration.rootSerial ,
forCertificateData: certificateData) else {

ŵŶhttps://github.com/minvws/nl-covid19-notification-app-coordination/blob/0b9d8330c35b2aee98b1203c3e224eb8
863d37a8/architecture/

© Secura BV, ŵųŵų ŷż of ŸŻ

https://github.com/minvws/nl-covid19-notification-app-coordination/blob/0b9d8330c35b2aee98b1203c3e224eb8863d37a8/architecture/
https://github.com/minvws/nl-covid19-notification-app-coordination/blob/0b9d8330c35b2aee98b1203c3e224eb8863d37a8/architecture/

CONFIDENTIAL

return nil
}

guard openssl.validateSubjectKeyIdentifier(SignatureConfiguration.
rootSubjectKeyIdentifier ,

forCertificateData: certificateData)
else {

return nil
}

return certificateData
}
}

The signature validator checks the chain based on a particular root certificate (which receives two additional checks) and a

specific authorityKeyIdentifier in the leaf certificate (this normally matches the subjectKeyIdentifier of the
issuing CA certificate). No subject name validation is observed, neither in this class nor in

ENCore/Common/Crypto/OpenSSL.m. This is inconsistent with the documentation.

The root certificate and authorityKeyIdentifier are defined in
ENCore/Common/Crypto/SignatureConfiguration.swift:

final class SignatureConfiguration {
static var rootCertificateData: Data? {

guard let localUrl = Bundle(for: SignatureConfiguration.self).url(
forResource: "nl-root", withExtension: "pem") else {

return nil
}

return try? Data(contentsOf: localUrl)
}

static var rootSubjectKeyIdentifier: Data {
// 04:14:54:AD:FA:C7:92:57:AE:CA:35:9C:2E:12:FB:E4:BA:5D:20:DC:94:57
return Data([0x04, 0x14, 0x54, 0xad, 0xfa, 0xc7, 0x92, 0x57, 0xae, 0xca, 0

x35, 0x9c, 0x2e, 0x12, 0xfb, 0xe4, 0xba, 0x5d, 0x20, 0xdc, 0x94, 0x57])
}

static var authorityKeyIdentifier: Data {
// 04:14:c3:9a:a6:7b:5e:74:2b:82:b6:c6:72:fd:74:4e:85:d2:97:cd:fd:18
return Data([0x04, 0x14, 0xc3, 0x9a, 0xa6, 0x7b, 0x5e, 0x74, 0x2b, 0x82, 0

xb6, 0xc6, 0x72, 0xfd, 0x74, 0x4e, 0x85, 0xd2, 0x97, 0xcd, 0xfd, 0x18])
}

static var rootSerial: UInt64 {
return 10003001

}
}

The certificate located in ENCore/Resources/nl-root.pem is Staat der Nederlanden Root CA - G3, the
same national root certificate pinned during TLS connections. The rootSubjectKeyIdentifier and serial number
match it.

© Secura BV, ŵųŵų Ÿų of ŸŻ

CONFIDENTIAL

The authorityKeyIdentifier corresponds to that of the following KPN intermediate certificateŵŷ:

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

7b:74:85:b9:f0:51:4a:55:21:e5:2d:39:1a:1a:ae:db:93:6d:8f:8c
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = NL, O = Staat der Nederlanden , CN = Staat der Nederlanden

Organisatie Services CA - G3
Validity

Not Before: Apr 16 08:40:16 2019 GMT
Not After : Nov 12 00:00:00 2028 GMT

Subject: C = NL, O = KPN B.V., organizationIdentifier = NTRNL -27124701, CN
= KPN BV PKIoverheid Organisatie Server CA - G3

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (4096 bit)
Modulus:

00:cd:[...]
Exponent: 65537 (0x10001)

X509v3 extensions:
Authority Information Access:

CA Issuers - URI:http://cert.pkioverheid.nl/
DomOrganisatieServicesCA -G3.cer

OCSP - URI:http://domorganisatieservicesocsp -g3.pkioverheid.nl

X509v3 Subject Key Identifier:
C3:9A:A6:7B:5E:74:2B:82:B6:C6:72:FD:74:4E:85:D2:97:CD:FD:18

X509v3 Basic Constraints: critical
CA:TRUE, pathlen:0

X509v3 Authority Key Identifier:
keyid:43:EB:4D:00:D3:95:93:CE:A6:7C:40:0D:6D:11:BE:39:D1:32:AE:E2

qcStatements:
0.0...+.......0.......I..

X509v3 Certificate Policies:
Policy: 2.16.528.1.1003.1.2.5.6

CPS: https://cps.pkioverheid.nl

X509v3 CRL Distribution Points:

Full Name:
URI:http://crl.pkioverheid.nl/DomOrganisatieServicesLatestCRL -G3.

crl

X509v3 Key Usage: critical
Certificate Sign, CRL Sign

X509v3 Extended Key Usage:
TLS Web Client Authentication , OCSP Signing, TLS Web Server

Authentication
Signature Algorithm: sha256WithRSAEncryption

ŵŷSee https://certificaat.kpn.com/installatie-en-gebruik/installatie/ca-certificaten/kpn-g3-ca/

© Secura BV, ŵųŵų ŸŴ of ŸŻ

https://certificaat.kpn.com/installatie-en-gebruik/installatie/ca-certificaten/kpn-g3-ca/

CONFIDENTIAL

bb:b0:[...]

This CA certificate is widely used for government organisations using the PKIOverheid service through KPN. Any (web)

application that uses this will have a authorityKeyIdentifier value matching this certificate. An example is the server
certificate in use on https://duo.nl/.

If an attacker manages to obtain a private key belonging to any recent PKIOverheid certificate issued by KPN, they will be able

to set signatures that pass this local validation.

RISK NOTE Ŷ ŵųųŹųŸŵŷ-NŶ

Topic The subject name in the certificate used for TEK signing is not checked.

Applies to CoronaMelder application

Description When validating the second signature (using the certificate based CMS/PKCS#ź format) on a

TEK list received by the server, the root and issuing CA certificates within the chain are checked.

The subject name in the leaf certificate is not validated. See section ŷ.ŵŶ on page ŷż for more

information.

Risk Any leaf certificate recently issued by KPN as part of the PKIOverheid service would be accepted

by the SignatureValidator class. If an attacker wouldmanage to obtain a key corresponding
to such a certificate, they could forge TEK signatures. This violates the integrity requirements

defined in the architecture documentation. Because TEKs are also protected in transit by TLS

connection, and have additional protection due to the GAEN signature, it has not become clear

during this assessment how this flaw could be practically exploited by an attacker.

Recommendation Validate that the Subject of the signature certificate contains the correct Common Name (CN).

Reproduction See the description in section ŷ.ŵŶ on page ŷż

Metadata Likelihood: Low, Impact: Low, CVSS-Score:Ŵ.ż CVSS:Ŷ.ų/AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:N/A:N

Ŷ.ŴŶ. Correct use of the Google and Apple API’s (GAEN)

Requirement Correct use of the Google and Apple API’s (GAEN)

Conclusion Secura finds no inconsistencies to this requirement.

The communication with the GAEN is central to the correct functioning of both applications. No vulnerabilities were discovered

in how the CoronaMelder apps (Android and iOS) make use of the GAEN APIs.

Ŷ.Ŵŷ. Limited permissions

Requirement Correct use of application permissions

Conclusion Secura finds no inconsistencies to this requirement.

As detailed in section ŷ.ŴŹ on page Ŷż, both the Android and iOS application only request permissions that are essential for the

correct execution of the application. No superfluous permissions were discovered.

© Secura BV, ŵųŵų Ÿŵ of ŸŻ

https://duo.nl/

CONFIDENTIAL

Ŷ.ŴŸ. Root / Jailbreak detection

Requirement Protection of the integrity of the application: No installation on rooted/jailbroken devices

Conclusion The application can be installed on rooted/jailbroken devices. This is in line with a concious choice

made by the developers and discussed in the documentation. However, end users should be

informed via a message of the risks of using the application on such a device.

Both the iOS and Android application do not include functionality to detect an installation on a rooted or jailbroken device. This

was a concious design decision as detailed in the documentationŵŸ:

”The Google Reference Implementation of a backend for exposure notification suggests the use of DeviceCheck

(iOS) and Safetynet Attestation (Android) to validate if a request comes from a genuine android device and/or

from the official app: https://github.com/google/exposure-notifications-
server/blob/master/docs/server_functional_requirements.md

The documentation for DeviceCheck and Safetynet Attestation can be found here:

https://developer.apple.com/documentation/devicecheck,
https://developer.android.com/training/safetynet/attestation.

We have decided not to apply these platform specific checks. First, it relies on a server API at Apple and Google,

which can be down and could be a privacy risk.

Second, the Android Developer blog states:

”In other words, not all users who fail attestation are necessarily abusers, and not all abusers will necessarily fail

attestation. By blocking users solely on their attestation results, you might be missing abusive users that don’t fail

attestations. Furthermore, you might also be blocking legitimate, loyal customers who fail attestations for

reasons other than abuse” (NOTE:

https://android-developers.googleblog.com/ŴŲųŹ/ųų/ųŲ-things-you-might-be-doing-wrong-when.html)

The safetynet attestation documentation further states about attestation failure: ”Most likely, the device

launched with an Android version less than Ź.Ų and it does not support hardware attestation. In this case, Android

has a software implementation of attestation which produces the same sort of attestation certificate, but signed

with a key hardcoded in Android source code. Because this signing key is not a secret, the attestation could have

been created by an attacker pretending to provide secure hardware” (NOTE:

https://developer.android.com/training/articles/security-key-attestation)

This leads us to believe that when applying these checks, we introduce risks and dependencies while not gaining a

substantial amount of security.”

While the reasoning for this use case is sound, it still leaves users of rooted/jailbroken devices at a higher risk level. The

application should notify users of this fact.

ŵŸhttps://github.com/minvws/nl-covid19-notification-app-coordination/blob/master/architecture/

© Secura BV, ŵųŵų ŸŶ of ŸŻ

https://github.com/google/exposure-notifications-server/blob/master/docs/server_functional_requirements.md
https://github.com/google/exposure-notifications-server/blob/master/docs/server_functional_requirements.md
https://developer.apple.com/documentation/devicecheck
https://developer.android.com/training/safetynet/attestation
https://github.com/minvws/nl-covid19-notification-app-coordination/blob/master/architecture/

CONFIDENTIAL

REMARK ŷ ŵųųŹųŸŵŷ-Rŷ

Topic No notification for installation on jailbroken / rooted devices

Applies to CoronaMelder application

Description The application does not detect if it is installed on a jailbroken/rooted device. All of the applica-

tion’s functionality can be used after installation on a jailbroken/rooted device. This is a concious

decision as detailed in the architecture documentation. For more information see section ŷ.ŵŸ on

page Ÿŵ.

Recommendation Detect if the application is installed on a jailbroken device and notify the user about the possible

implications.

© Secura BV, ŵųŵų Ÿŷ of ŸŻ

CONFIDENTIAL

A. TESTING APPROACH AND BACKGROUND

A.ų. Technical Security Assessment Types
To achieve the goal stated above, Secura uses a methodology that is derived from the Open Web Application Security

Project (OWASP), the Information Systems Security Assessment Framework (ISSAF) and the Open Source Security Testing

Methodology Manual (OSSTMM). It provides the correct execution of, amongst others, the following types of projects:

• Technical security assessment

(this can relate to an infrastructure, networks and network components, systems and combinations hereof);

– Black box (with minimal information in advance and no credentials);

– Grey box (using credentials supplied in advance);

– Crystal box (having full access to all information pertaining the system to be assessed);

• Code inspection;

• Vulnerability scan.

A.Ŵ. System Changes
We recommend that changes to facilitate the investigation are reverted. For instance changes to the firewall or IDS/IPS

infrastructure, or newly created users and data in applications.

A.ŵ. Assessment Criteria
Secura assessed the configuration and management of the systems to be examined against best practices as applicable for the

type of systems at the time of the investigation.

A.Ŷ. Classification of Findings
A risk is defined by the impact multiplied by the likelihood of the risk occurring.

This section describes how we determine the likelihood and impact of risks.

A.Ŷ.ų. Likelihood
The likelihood of exploitation is influenced by a number of variables, such as the (technical) knowledge that is needed to abuse

a vulnerability and the availability (public or not) of programs (exploits) to take advantage of a vulnerability. Historical data can

also be used to estimate the likelihood. Our classifications take into account the access level to the system that is needed, the

difficulty of the techniques used, and the knowledge that is available or needed for the attacker. The classification of the

likelihood can be found in table A.Ŵ on the following page.

© Secura BV, ŵųŵų ŸŸ of ŸŻ

CONFIDENTIAL

Classification Description

Low Requires a skilled attacker dedicated to exploiting this weakness, significant

effort or resources, inside knowledge and/or circumstances outside of the

control of the attacker (i.e. the use of a specific browser version by the

victim).

Medium Requires considerable skill, fair effort or resources, customised attacks

and/or circumstances which an attacker may skillfully arrange (i.e. by means

of social engineering).

High Requires low or medium skill, minimal effort or resources and the use of

publicly available knowledge or tools.

Table A.Ŵ: Likelihood of abuse

A.Ŷ.Ŵ. Impact
The impact concerns the consequences of an event. The impact includes financial damages and loss of reputation. Due to a

lack of detailed knowledge of the customers business we are unable to determine the business impact. Instead, we determine

the impact from a technical perspective and leave the estimation of the business impact to the customer. The classification we

use is included in table A.ŵ.

Classification Description

Low Very limited negative consequences for confidentiality, integrity and/or

availability of the system under investigation.

Medium Limited negative consequences for confidentiality, integrity and/or avail-

ability of the system under investigation.

High Great negative consequences for confidentiality, integrity and/or availability

of the system under investigation.

Table A.ŵ: (Technical) impact of consequences

A.Ŷ.ŵ. Risk
Based on the estimates of both likelihood and impact, the risk can be determined. We include a matrix to show how the risk is

determined from these factors.

The risks are categorised in the following risk levels: critical, high, medium, low, and note.

We recommend to resolve all risks, but especially those with a classification of critical, high or medium. In the case of critical

risks, we advise to take the application or infrastructure off-line and resolve the risk immediately. Furthermore, it would be

prudent to investigate whether these risks have been exploited. In the case of high risks, we advise to resolve the risk as quickly

as possible.

A.ŷ. Remarks
Apart from ‘risk’, Secura also uses the term ‘remark’.

A remark is something that does not lead to a risk, often a functional problem. Whether or not this is resolved, is up to the

customer.

© Secura BV, ŵųŵų ŸŹ of ŸŻ

CONFIDENTIAL

A.Ÿ. Dossier
During the investigation extensive logs were kept. This information was used to create this report and is stored in a dossier

belonging to this investigation. This information will be kept securely on the systems of Secura for a limited period of

time.

After the final version of this report has been delivered to the customer, the digitally stored data will be overwritten multiple

times before it is removed from the system (the end result can be compared to a secure erase as specified in “DoD Ÿŵŵų”).

Information on paper, CD-ROM and/or DVD-ROM will be destroyed using a shredder complying to DIN standard ŹŹŶżż/ŵųŴŵ

level ŶŴ.”

ŴThis standard applies to the destruction of confidential documents.

© Secura BV, ŵųŵų Ÿź of ŸŻ

CONFIDENTIAL

B. USED ACRONYMS

In our profession acronyms are often used. Because the meaning may not always be directly clear, this appendix tries to

provide an overview of all acronyms used in this document.

RPI Rolling Proximity Identifiers

GAEN Google Apple Exposure Notification

TEK Temporary Exposure Key

AN Alternative Name

API Application Programming Interface

BSD Berkeley Software Distribution

CA Certificate Authority

CMS Content Management System

CN Common Name

DIN Deutsches Institut für Normung e.V.

DoD Department of Defense

GPS Global Positioning System

IDS Intrusion Detection System

IPS Intrusion Prevention System

IP Internet Protocol

ISSAF Information Systems Security Assessment

Framework

MitM Man-in-the-Middle

OSSTMM Open Source Security Testing Methodology

Manual

OWASP Open Web Application Security Project

PDF Portable Document Format

PKCS Public Key Cryptography Standards

SHA Secure Hash Algorithm

SSL Secure Sockets Layer

TLS Transport Layer Security

USB Universal Serial Bus

© Secura BV, ŵųŵų ŸŻ of ŸŻ

	Management Summary
	Results of the review
	Recommendations
	Conclusion
	Limitations of the assessment
	Final Notes

	Technical Summary
	Research questions
	Requirements with inconsistencies
	Mapping of requirements

	Most Important Findings
	Overview of Findings

	Description of the Engagement
	Scope of the Assessment
	Information Provided
	Goal of the Assessment
	Reporting
	Approach
	Limitations

	Application Assessment
	Application version
	Research questions
	U13 - Data collection
	iOS
	Android

	F3 - Anonymous contact codes
	F4 - Secure uninstallation
	iOS
	Android

	F5 - Temporary disabling the application
	Submission of Decoys while application is disabled

	F6 - Collection of anonymous contact codes
	F7 - Central configuration
	iOS
	Android

	F8 - Removal of old data
	iOS
	Removal of exposure TEKs
	Android
	Conclusion

	F9 - Collection of contact codes
	iOS
	Android

	F10 - Central configuration
	iOS
	Android

	F11 - Automatic exposure detection based on configuration
	iOS
	Android

	Q13 - Warnings on communication errors
	iOS
	Android

	Q14 - Warning on loss of required technology
	iOS
	Android

	Q22 - De-anonymization
	Anonymity: unlinkability of TEKs to individuals
	Decoy uploads

	Q23 - No location Data
	iOS
	Android

	Q26 - Anonymous contact codes
	Q28 - Use only after explicit consent
	iOS
	Android

	Generation, storage and transport of logging data.
	Protection of data in local storage
	External libraries
	iOS
	Android

	Protection of data in transit
	Android

	TEK signing
	Correct use of the Google and Apple API's (GAEN)
	Limited permissions
	Root / Jailbreak detection

	Testing Approach and Background
	Technical Security Assessment Types
	System Changes
	Assessment Criteria
	Classification of Findings
	Likelihood
	Impact
	Risk

	Remarks
	Dossier

	Used Acronyms

